

Workshop-Inorganic Chemistry

				S-Bloci	K Elemei	nts							
		rect alternative.	. Only O	ne Choice is Coi	rect. Ho	wever, question	ns mark	ed with '*' may have More					
1.	Which (A)	of the following is Be	not knov (B)	vn as alkaline eart Ca	h metal ? (C)	Ba	(D)	Ra					
*2.	Which (A) (C)	of the following is Sodium and pota Francium is high	ssium ar	e more abundant	(B) (D)			esium have lower abundance alkali metal					
*3.	Identify (A) (B) (C) (D)	Strontium and ba Beryllium is rare	correct statement(s)? Magnesium and calcium are more abundant Strontium and barium have much lower abundances Beryllium is rare Radium is the rarest of all alkaline earth metals. of the following Group 1 and Group 2 elements shows anomalous properties and in these properties they										
*4.		of the following of the second elements	_			ows anomalous p	roperties (D)	and in these properties they Mg					
*5.	Which (A)	of the following pa Li – Mg	nirs(s) sho	ows diag <mark>onal</mark> relat Be – Al	ionship? (C)	Li – Be	(D)	Fr – Ra					
*6.	nerve in	npulse conduction				_		nintenance of ion balance and					
	(A)	Na ⁺	(B)	K ⁺	(C)	Mg^{2+}	(D)	Ca ²⁺					
*7.	Which (A) (B) (C) (D)	These are most e They form mono	tals have lectropos valent M	one valence elect sitive metals									
*8.	 (D) They are never found in free state in nature Identify correct statement(s). (A) The alkali metal atoms have the largest sizes in a particular period of the periodic table (B) The atomic and ionic radii of alkali metals increase on moving down the group (C) The ionization enthalpies of the alkali metals are considerably low (D) The ionization enthalpies of alkali metals decrease down the group from Li to Cs 												

- ***9.** Which of the following is(are) correct?
 - (A) Hydration enthalpy of alkali metal ions is negative
 - **(B)** Hydration enthalpy of alkali metal ions decrease with increase in ionic sizes
 - (C) Lithium ion has maximum enthalpy of hydration
 - **(D)** Caesium ion has maximum enthalpy of hydration
- **10.** Lithium salts are mostly hydrated because :
 - (A) High ionization enthalpy of lithium (B) High degree of hydration of lithium ion
 - (C) High covalent nature of lithium salts (D) Lithium ion form H-bond with water molecule
- *11. Which of the following is(are) correct?
 - (A) Ionic size of Li⁺(g) is smaller than the ionic size of Na⁺(g)
 - **(B)** Ionic size of Li⁺(aq) is greater than the ionic size of Na⁺(aq)
 - (C) Ionic conductance of LiCl(aq) is less than the ionic conductance of NaCl(aq)
 - (D) Ionic conductance of LiCl(ℓ) is more than the ionic conductance of NaCl(ℓ)
- *12. Which of the following order of physical properties of alkali metals is(are) correct?
 - (A) Melting point : Li > Na > K > Rb > Cs
 - (B) Boiling point : Li > Na > K > Rb > Cs
 - (C) Density : Cs > Rb > Na > K > Li
 - (D) $E^{\circ}(M^+/M)$: Na > K > Cs > Rb > Li
- *13. Which of the following statements are correct?
 - (A) The alkali metals do not react with dry air
 - **(B)** The alkali metals tarnish in dry air due to the formation of their oxides which in turn react with moisture to form hydroxides
 - (C) Alkali metals are normally stored in water
 - (D) Alkali metals are normally stored in kerosene oil
- *14. Which of the following statements are correct?
 - (A) Lithium forms superoxide, sodium forms peroxide and the other alkali metals K, Rb & Cs form monoxide
 - (B) Lithium forms monoxide, sodium forms peroxide and the other alkali metals K, Rb & Cs form superoxides
 - (C) The superoxide O_2^- ion is stable only in the presence of small cations such as Li^+
 - (D) The superoxide O_2^- ion is stable only in the presence of large cations such as K^+ , Rb^+ and Cs^+
- *15. Which of the following are correct?
 - (A) In all the oxides of alkali metals (i.e. the monoxide, peroxide and superoxides) the oxidation state of the alkali metal is +1
 - (B) The oxidation state of the alkali metals in the monoxide is +1 whereas the same in the peroxide and superoxides is +2
 - (C) Li and Na react with nitrogen of air to form the nitrides Li₃N & Na₃N respectively
 - (**D**) Only Li reacts with the nitrogen of air to form Li₃N

- **16.** The superoxide anion is :
 - (A) O_2^{2-}
- **(B)** O_2^-
- (C) O^{2-}
- **(D)**

 O^{-}

- 17. Which of the following statements are true?
 - (A) The alkali metals react with water to form hydroxide and dioxygen
 - **(B)** The alkali metals react with water to form hydroxide and dihydrogen
 - (C) The alkali metals react with water to form only hydroxide
 - (D) The alkali metals react only with air and not with water and so are stored under water
- *18. Which of the following statements are true?
 - (A) Lithium reacts most vigorously with water as compared to the rest of the alkali metals
 - (B) Lithium reacts least vigorously with water as compared to the rest of the alkali metals
 - (C) The metals K, Rb, Cs react explosively with water
 - (D) The alkali metals do not react with proton donors such as alcohol, gaseous ammonia and alkynes
- *19. The alkali metals react with dihydrogen to form hydrides:

$$2M + H_2 \longrightarrow 2MH$$

Which of the following statements about these metal hydrides are true?

- (A) They are covalent solids
- **(B)** They are ionic solids
- (C) They have high melting points
- **(D)** They have low melting points
- ***20.** Consider the following information:
 - (i) The distortion of electron cloud of the anion by the cation is called polarisation.
 - (ii) The alkali metals react vigorously with halogens to form ionic halides M⁺X⁻ Which of the following statements are correct?
 - (A) The lithium halides are somewhat covalent in nature due to the high polarisation capability of Li⁺
 - (B) The lithium halides are purely ionic in nature due to the low polarisation capability of Li⁺
 - (C) Since the electron cloud of large anions can be distorted easily, among lithium halides, LiI is the most covalent
 - (D) Since it is very difficult to distort the electron cloud of large anions, among the lithium halides, LiI is most ionic
- *21. The standard electrode potential (E°) measures the reducing power and represents the overall change:

$$M(s) \longrightarrow M(g)$$

(sublimation enthalpy)

$$M(g) \longrightarrow M^+(g) + e^-$$
 (ionization enthalpy)

$$M^+(g) + H_2O \longrightarrow M^+(aq)$$

(hydration enthalpy)

Which of the following statements are true?

- (A) Higher is the positive E° value, greater is the reducing power
- (B) Higher is the negative E° value, greater is the reducing power
- (C) With the small size of its ion, lithium has the smallest hydration enthalpy which accounts for its high positive E° value and its low reducing power
- (D) With the small size of its ion, lithium has the highest hydration enthalpy which accounts for its high negative E° value and its high reducing power

22.	The alkali metal	ls dissolve in li	anid ammonia	giving solutions	which are con	nducting in nature:
	I IIC alikali ilicai	is aissoive iii ii	quiu ummomu	Siving bolderolls	William are con	idacting in nature.

$$M + (x + y)NH_3 \longrightarrow [M(NH_3)_x]^+ + [e(NH_3)y]^-$$

Which of the following statements about the solution are true?

- (A) The solution is blue in colour due to the ammoniated electrons which absorb energy in the visible region of light.
- **(B)** The solutions are paramagnetic and on standing, slowly liberate hydrogen resulting in the formation of amide.
- (C) In concentrated solution, the blue colour changes to bronze colour and the solution becomes diamagnetic
- **(D)** All of the above

*23. Lithium metal:

- (A) is used to make useful alloys
- (B) is used in thermonuclear plates
- (C) is used to make electrochemical cells
- **(D)** is used in making statues

24. PbEt₄ and PbMe₄ are organolead compounds that were earlier used as antiknock additives to petrol.

An alkali metal, M was used to make an alloy M/Pb which was needed for the production of the above compounds. M is:

- (A) Potassium
- (B) Sodium
- (C) Rubidium
- (D) Lithium

*25. Which of the following statements are correct?

- (A) Liquid sodium metal is used as a coolant in fast breeder nuclear reactors
- **(B)** Potassium has a vital role in biological systems
- (C) Potassium chloride is used as a fertilizer
- (D) Potassium chloride is used in the manufacture of soft soap
- **26.** Which of the following alkali metals is used in devising photoelectric cells?
 - (A) Sodium
- (B) Potassium
- (C) Caesium
- (D) Lithium

27. The general formulae of the oxides formed by the alkali metals are: M₂O, M₂O₂, MO₂. These oxides are respectively:

- (A) oxide, peroxide, superoxide
- (B) superoxide, peroxide, oxide
- (C) superoxide, oxide, peroxide
- **(D)** oxide, superoxide, peroxide

28. As the size of the alkali metal ions increases, the stability of the peroxides and the superoxides becomes more as compared to the oxides. This is due to:

- (A) The stabilisation of larger cations by smaller anions through lattice energy effects.
- (B) The stabilisation of smaller cations by larger anions through lattice energy effects.
- (C) The stabilisation of larger cations by larger anions through lattice energy effects.
- **(D)** None of the above

*29. Which of the following statements regarding the oxides of alkali metals true?

- (A) The oxides and peroxide are yellow or orange in colour while the superoxides are colourless when pure.
- **(B)** The oxides and peroxide are colourless when pure, but the superoxides are yellow or orange in colour.
- (C) The superoxides are paramagnetic
- **(D)** The superoxides are diamagnetic

- *30. Which of the following statements regarding the hydroxides of alkali metals true?
 - (A) They are obtained by the reaction of metals or metal oxides with water
 - **(B)** They are all coloured, amorphous solids
 - (C) They are all white, crystalline solids
 - **(D)** They are the strongest of all bases and dissolve freely in water with the evolution of much heat on account of intense hydration.
- 31. The alkali metal halides, MX (X = F, Cl, Br, I)
 - (A) are all high melting, colourless crystalline solids
 - (B) can be prepared by the reaction of the appropriate oxide, hydroxide or carbonate with aqueous hydrohalic acid (HX).
 - (C) are soluble in water
 - **(D)** all of the above
- *32. The alkali metal halides have high negative enthalpies of formation. Which of the following statements are correct?
 - (A) The $\Delta_f H^{\circ}$ values for fluorides become less negative as we go down the group
 - (B) The $\Delta_f H^\circ$ values for chlorides, bromides and iodides become more negative as we go down the group
 - (C) For a given metal, $\Delta_f H^{\circ}$ always becomes more negative from fluoride to iodide
 - (D) For a given metal, $\Delta_f H^{\circ}$ always becomes less negative from fluoride to iodide
- 33. The melting and boiling points of alkali metal halides always follow the trend?
 - (A) fluoride > chloride > bromide > iodide
- **(B)** fluoride < chloride > bromide > iodide
- (C) fluoride < chloride < bromide < iodide
- (**D**) fluoride > chloride < bromide < iodide
- *34. Which of the following statements are correct?
 - (A) The low solubility of LiF in water is due to the small hydration enthalpy of its two ions.
 - **(B)** The low solubility of LiF in water is due to its high lattice enthalpy.
 - (C) The low solubility of CsI in water is due to its high lattice enthalpy.
 - (D) The low solubility of CsI in water is due to the small hydration enthalpy of its two ions.
- *35. Which of the following statements regarding oxo-acids true?
 - (A) Oxo-acids are those in which the acidic proton is on a hydroxyl group with an oxo group attached to the adjacent atom.
 - (B) Oxo-acids are those in which the acidic proton is on a hydroxyl group with an oxo group attached to the same atom.
 - (C) Carbonic acid (H_2CO_3) & sulphuric acid (H_2SO_4) are both oxo-acids.
 - (D) Alkali metals form salts with all oxo-acids which are generally soluble in water and thermally stable.
- *36. Alkali metals react with carbonic acid to form carbonates (M₂CO₃) and hydrogenearbonates (MHCO₃).

Which of the following statements regarding them are correct?

- (A) They are highly stable to heat
- **(B)** They decompose very quickly on heating
- (C) As the electropositive character increases down the group, their stability increases
- (D) Lithium carbonate is not so stable to heat as lithium being very small in size polarizes a large CO_3^{2-} ion leading to the formation of more stable Li_2O and CO_2

			· · · · · ·	amanan c	145565						
*37.	The ar	nomalous behaviour of l	ithium is due to the	e :							
	(A)	exceptionally large si									
	(B)	exceptionally small s									
	(C)	high polarising powe									
	(D)	low polarising power	· -								
38.	Lithiu	m compounds:									
	(A)	have an increased co	valent character an	nd hence are	soluble in org	anic solvents.					
	(B)	have an increased ior	nic character and h	ence are sol	uble in organi	c solvents.					
	(C)	have an increased co	valent character an	nd hence are	insoluble in o	rganic solven	ts.				
	(D)	have an increased ion	nic character and h	ence are ins	oluble in orga	nic solvent.					
*39.	Which	of the following statem	nents are correct?								
	(A)	The m.p and b.p of L	i is higher than the	e other alkal	i metals						
	(B)	Li is least reactive but the strongest reducing agent									
	(C)	LiCl is deliquescent	and crystallises as	s a hydrate,	$\text{LiCl} \cdot 2\text{H}_2\text{O}$	whereas othe	r alkali metal chlorides	s do not			
		form hydrates									
	(D)	Lithium hydrogenca	rbonate is not ob	otained in t	he solid form	while all o	ther alkali metals for	m solid			
		hydrogencarbonates									
*40.	Which	of the following statem	nents are correct?								
	(A)	Like other alkali met	als, lithium too for	rms ethynide	e on reaction v	vith ethyne					
	(B)	Lithium nitrate when	n heated gives lith	nium oxide	Li ₂ O, where	as other alka	li metal nitrates decom	pose to			
		give the corresponding nitrite (C) LiF and Li ₂ O are comparatively much more soluble in water than the corresponding compounds of other									
	(C)		omparatively much	n more solu	ble in water t	han the corre	sponding compounds of	of other			
		alkali metals									
	(D)		nparatively much l	less soluble	in water than	the correspon	ding compounds of other	er alkali			
		metals									
41.		milarity between lithiun	_	7	ly striking and	arises becaus	e of their similar size.				
		of the following statem									
	(A)	Both are harder and l		elements in t	he respective	groups					
	(B)	Both react slowly wi									
	(C)				=		ot decompose on heating	g			
	(D)	Both form a nitride I	Li_3N and Mg_3N_2	by direct co	mbination wit	h nitrogen					
*42.	Which	of the following statem	nents are correct?								
	(A)	The oxides, Li ₂ O and	l MgO combine wi	ith excess ox	xygen to give	superoxides					
	(B)	The carbonates of Li	and Mg decomposition	ose easily or	n heating to fo	rm the oxides	and CO ₂				
	(C)	LiCl and MgCl ₂ are	insoluble in ethan	ol (D)	Both LiCl a	and MgCl ₂ a	re deliquescent				
43.	Solvay	process is used for the	nreparation of								
10.	(A)	Sodium chloride	preparation or .	(B)	Sodium hy	droxide					
	(C)	Sodium carbonate		(D)	Sodium sul						
						r					
*44.		of the following compo	=			(B)	N. Cl				
	(A)	NH_3 (B)	CO_2	(C)	H_2O	(D)	NaCl				

In the Solvay process, NaCl reacts with X to form Y and Z.

45.

		NaCl+X —	\longrightarrow Y + Z									
	X, Y a	and Z are respec	tively:									
	(A)	NH ₄ Cl, (NH	I_4) ₂ CO ₃ ,	NaHCO ₃	(B)	NH_4HCO_3 , N	H ₄ Cl, NaHCO ₃					
	(C)	NaHCO ₃ , N	H ₄ Cl, NH	₄ HCO ₃	(D)	None of the ab	ove					
46.	In the	Solvay process,	NH ₄ Cl is	obtained as a	by product. I	n order to recover	NH ₃ from it, it is treated	ed with:				
	(A)	$CaCl_2$	(B)	NaCl	(C)	Ca (OH) ₂	(D) $MgCl_2$					
*47.	Which	n of the followin	g statemen	ts are correct?	,							
	(A)					_	carbonate from potassium					
	(B)	• 1			7		ate from potassium chlori					
	(C)						tated by the addition	of ammonium				
	(D)			saturated solut	-		ted by the addition	of ammonium				
	(2)			saturated solut			9, 111					
*48.	Which	n of the followin	g statemen	ts regarding so	dium carbon	ate correct?						
	(A)	Sodium carbo	onate is a v	vhite crystallin	e solid which	exists as a decah	ydrate, Na ₂ CO ₃ ·10H ₂ O	1				
	(B)	It is readily s										
	(C)											
	(D)	Above 373 K ASH	the mond	hydrate becon	nes completel	y anhydrous and	changes to a white powd	er called SODA				
49.	Anoth	er name for sod	ium carbon	ate is:								
	(A)	Baking soda	(B)	Caustic sod	la (C)	Washing soda	(D) Common sal	t				
50.	The ca	arbonate part of	sodium caı	bonate gets hv	drolvsed by v	vater to form:						
	(A)	An acidic sol			(B)	An alkaline sol	ution					
	(C)	A neutral sol	ution		(D)	None of the ab	ove					
*51.	Which	n of the followin	g are impo	rtant uses of so	odium carbon	ate?						
	(A)		_	ring and clean	_							
	(B)			e of glass, soap	, borax and c	austic soda.						
	(C)	Used in nucle			tui aa							
	(D)			d textile indus								
*52.	•		-			•	aporation of sea water.	C.1. C.11. '				
		sodium chloric ounds as impurit	_	lly obtained b	y crystalliza	tion of brine sol	ution, contains which o	t the following				
	(A)	Sodium sulpl			(B)	Calcium sulpha	ate					
	(C)	Calcium chlo			(D)	Magnesium ch						
53.	In cru	de sodium chlor	ide, CaCl ₂	& MgCl ₂ are	e impurities b	ecause they are:						
	(A)	deliquescent	2	-	(B)	efflorescent						
	(C)	both (A) & (1	3)		(D)	None of the ab	ove					

54.	insolub	le impui		solution			alt is dissolved in minimum amount of 'X' and filtered to remove ar rated with a gas 'Y'. Crystals of pure sodium chloride separate out.							
	(A) (C)	-	and amm				(B) (D)	-	-	drogen ch rogen chl				
*55.	Commo (A)	on salt (1 Na ₂ O		used for t (B)	the prepa NaOH		which of (C)	the following Na ₂ C	_	mpounds (D)	? NO ₂			
56.	Sodium (A) (C)	Evapo		H is usua sea water		red com	mercially (B) (D)	Electr					-Kellner cell with CO ₂	
*57.		of the st A brin Sodiur Chlori	lium hydroxide is a white, translucent solid.											
*58.	Which (A) (B) (C) (D)	Sodiur Sodiur Crysta	Sthe following statements are correct? Sodium hydroxide is a white, translucent solid. Sodium hydroxide is readily soluble in water to give a strong alkaline solution. Crystals of NaOH are efflorescent. NaOH solution at the surface reacts with the CO ₂ in the atmosphere to form Na ₂ CO ₃ . The following statements regarding the uses of sodium hydroxide true?											
*59.	Which (A) (B) (C) (D)	used in used in used in	the man petroleum the puri	ufacture im refinir fication o	of soap, page. of bauxite	paper, ar	ses of sodi tificial sil	ks and a			als.			
60.	Match t		wing con	npounds v	with their	r commo Colun	n names :							
	(I) (II) (III) (IV) (V)	Na ₂ CO ₃ ·10H ₂ O NaCl NaOH NaHCO ₃		(p) (q) (r) (s) (t)	Wash: Soda	g soda ing soda								
		(I)	(II)	(III)	(IV)	(V)		(I)	(II)	(III)	(IV)	(V)		
	(A) (C)	p r	q p	r t	s q	t s	(B) (D)	t s	s p	r t	q r	p q		
61.	Sodium hydrogencarbonate is known as baking soda because it decomposes on heating to generate bubbles of a gas 'X'. This leaves holes in cakes & pastries and makes them light and fluffy X is:													
	(A)	SO_2		(B)	CO_2		(C)	СО	,	(D)	SO_3			

•	/: _		· adi	CI	_	
٧	10	yama	incii	r u	ass	eĸ

62.	Sodium	hydroge	ncarbona	ite, NaHO	CO ₃ is n	nade by:							
	(A) (C)	evapora Solvay	tion of se	ea-water			(B) (D)		-				Kellner cell. with CO ₂ .
63.	Sodium (A) (C)	as a mil		ite is used tic for sk ners		tion	(B) (D)		ing powd				
*64.	Which o	of the fol	lowing st	atements	are true	?							
	(A)		ons are fo	-	narily or	the outsi	de of cel	ls in the	blood pl	asma and	l in the in	nterstitial	fluids which
	(B)					transmiss				egulating	g the flow	v of wate	er across cell
	(C)	Sodium	and pota	assium a	re absolu	-	ical quar	ntitativel	y in their	-	o penetra	nte cell m	nembranes, in
	(D) K ⁺ ions are most abundant cations within cell fluids.												
65.	of cell n Which of (A) (B) (C)	of the foldone across to The sood	a very considerable variation in the concentration of sodium and potassium ions found on the opposite sides embranes. The following are true? The ionic gradient demonstrate that a discriminatory mechanism, called the sodium-potassium pump operates across the cell membrane. The sodium-potassium pump consumes more than one third of the ATP used by a resting animal. The sodium-potassium pump consumes about 15 kg ATP per 24 hours in a resting human.										
	(D)	All of the	ne above										
66.	Which of (A)	of the fol Magnes	_	lements i (B)	s an alka Calciu	aline earth m	metal? (C)	Berylli	ium	(D)	Bariun	n	
67.	The general electronic configuration of alkaline earth metals are represented as:												
	(A)	[noble g	gas] ns ¹				(B)	[noble	$gas]ns^2$				
	(C)	[noble g	gas] ns ² n	ip ¹			(D)	[noble	$gas]ns^2$	np ²			
68.		he follow Column Elemen	ı	EÍ		olumn II Configura	ation						
	(I)	Be		(p)	[He]2	s^2							
	(II)	Mg		(q)	[Kr]5	s^2							
	(III)	Ca		(r)	[Ar]4	s^2							
	(IV)	Sr		(s)	[Ne]3	s^2							
	(V)	Ba		(t)	[Xe]6	s^2							
		(I)	(II)	(III)	(IV)	(V)		(I)	(II)	(III)	(IV)	(V)	
	(A)	p	q	r	S	t	(B)	q	p	r	S	t	
	(C)	p	S	r	q	t	(D)	r	S	p	q	t	

- *69. Which of the following statements are true regarding alkaline earth metals?
 - (A) The atomic and ionic radii of the alkaline earth metals are smaller than those of the corresponding alkali metals in the same period.
 - **(B)** Within the group, the atomic and ionic radii increase with increase in atomic number.
 - (C) They have high ionisation enthalpies due to the fairly large size of the atoms.
 - (D) As we go down the group, the atomic size increases and the ionisation enthalpy decreases.
- 70. The first ionization enthalpies of the alkaline earth metals are higher than those of the corresponding Group I metals.

 The reason behind this is that:
 - (A) Their size is large as compared to the corresponding alkali metals.
 - **(B)** Their size is small as compared to the corresponding alkali metals.
 - (C) Their sizes are same as compared to the corresponding alkali metals.
 - **(D)** They are highly electropositive.
- *71. Which of the following statements are correct?
 - (A) The second ionisation enthalpies of the alkaline earth metals are smaller than those of the corresponding alkali metals.
 - (B) The hydration enthalpies of the alkaline earth metal ions are larger than those of alkali metals ions.
 - (C) Unlike alkali metal ions, the hydration enthalpies of alkaline earth metal ions decrease with increase in ionic size down the group.
 - (D) The compounds of alkaline earth metals are more extensively hydrated than those of alkali metals.
- *72. Which of the following statements regarding the physical properties of alkali earth metals correct?
 - (A) They are silvery white, lustrous and relatively soft but harder than the alkali metals.
 - **(B)** The melting and boiling points of these metals are higher than the corresponding alkali metals due to larger sizes.
 - (C) Because of low ionisation enthalpies, they are strongly electronegative.
 - (D) The electropositive character increases down the group from Be to Ba.
- 73. Match the element with the characteristic colour imparted by it to the flame.

	Colum	ın I		Column II				
	Eleme	ent		Colour				
(I)	Calo	cium	(p)	Apple green				
(II)	Stro	ntium	(q)	Crimson				
(III)	(III) Barium			Brick red				
	(I)	(II)	(III)			(I)	(II)	(III)
(A)	p	q	r		(B)	r	q	p
(C)	r	p	q		(D)	q	p	r

- **74.** Which of the following are true?
 - $\begin{array}{lll} \textbf{(A)} & \text{Metallic radius} & \text{Be} < \text{Mg} < \text{Ca} < \text{Sr} < \text{Ba} \\ \textbf{(B)} & \text{Ionic radius} & \text{Be} > \text{Mg} > \text{Ca} > \text{Sr} > \text{Ba} \\ \textbf{(C)} & \text{Hydration Enthalpy} & \text{Be} < \text{Mg} < \text{Ca} < \text{Sr} < \text{Ba} \\ \textbf{(D)} & \text{Ionization Enthalpy} & \text{Be} < \text{Mg} < \text{Ca} < \text{Sr} < \text{Ba} \\ \end{array}$

*75.	Which of the following statements are true?
------	---

- (A) The alkaline earth metals are less reactive than the alkali metals.
- **(B)** The alkaline earth metals are more reactive than the alkali metals.
- (C) The reactively of the alkaline earth elements decreases on going down the group
- (D) The reactively of the alkaline earth elements increases on going down the group

*76. Which of the following metals react with oxygen and nitrogen present in air to form the respective oxides and nitrides?

- (A) Be
- **(B)** Mg
- (C) Ca
- **(D)** Sr

*77. Which of the following statements are correct?

- (A) All the alkaline earth metals combine with halogen at elevated temperature forming their halides.
- (B) All the alkaline earth metals combine with hydrogen upon heating to form their hydrides.
- (C) All the alkaline earth elements except beryllium combine with hydrogen upon heating to form their hydrides.
- (D) All the alkaline earth metals except beryllium readily react with acids liberating dihydrogen.
- **78.** Match the following.

Column I Column II Compounds with their Best route of preparation Reaction of BeCl2 with LiALH4 BeF₂ **(I) (p)** $BeO + C + Cl_2$ (II) BeCl₂ **(q)** Thermal decomposition of $(NH_4)_2$ BeF₄ (III) BeH₂ **(r)**

- **(I)** (II)**(III)** (II) (III)(A) q **(B)** p r p q **(C)** r **(D)** p p
- **79.** Which of the following statements is correct?
 - (A) Unlike alkali metals, the alkaline earth metals are strong oxidising agents.
 - **(B)** Like alkali metals, the alkaline earth metals are strong reducing agents.
 - (C) Unlike alkali metals, the alkaline earth metals are strong reducing agents.
 - (D) Like alkali metals, the alkaline earth metals are strong oxidising agents.

80. Which of the following statements are true?

- (A) The reducing power of alkaline earth metals is less than those of the corresponding alkali metals.
- (B) The reducing power of alkaline earth metals is more than those of the corresponding alkali metals.
- (C) The reducing power of alkaline earth metals is equal to those of the corresponding alkali metals.
- **(D)** The alkaline earth metals are oxidising agents.
- *81. Beryllium has less negative value of its reduction potential as compared to the rest of the alkaline earth metals. However its reducing nature is due to:
 - (A) Small hydration energy associated with the small size of Be^{2+} ion.
 - (B) Large hydration energy associated with the small size of Be^{2+} ion.
 - (C) Relatively large value of the atomization enthalpy of the metal.
 - (D) Relatively small value of the atomization enthalpy of the metal.

- **82.** Which of the following statements of are correct?
 - (A) Unlike alkali metals, the alkaline earth metals dissolve in liquid ammonia to give orange solutions forming ammoniated ions.
 - (B) Like alkali metals, the alkaline earth metals dissolve in liquid ammonia to give orange solutions forming ammoniated ions.
 - (C) Unlike alkali metals, the alkaline earth metals dissolve in liquid ammonia to give blue black solutions forming ammoniated ions.
 - (D) Like alkali metals, the alkaline earth metals dissolve in liquid ammonia to give blue black solutions forming ammoniated ions.
- ***83.** Beryllium is used in the :
 - (A) manufacture of Be-Al alloys which are used in air-craft construction.
 - (B) manufacture of Cu-Be alloys which are used in making high strength springs.
 - (C) making windows of x-ray tubes.
 - **(D)** making toothpaste.
- ***84.** Which of the following are true?
 - (A) Mg-Al alloys being light in mass are used in air-craft construction.
 - **(B)** Mg (power and ribbon) is used in flash powders and bulbs, incendiary bombs and signals.
 - (C) A suspension of magnesium hydroxide in water (called milk of magnesia) is used as an antacid in medicine.
 - (**D**) Magnesium carbonate is are ingredient of toothpaste.
- **85.** Which of the following are correct?
 - (A) Ca is used in the extraction of metals from oxides which are difficult to reduce with C.
 - **(B)** Ca and Ba metals, owing to their reactivity with oxygen & nitrogen at elevated temperatures, have often been used to remove air from vacuum tubes.
 - (C) Radium salts are used in radiotherapy, for example, in the treatment of cancer.
 - **(D)** All of the above
- 86. The alkaline earth metals form compounds which are predominantly ionic but less ionic than the corresponding compounds of alkali metals. This is due to:
 - (A) Increased nuclear charge & greater size (B) Increased nuclear charge & smaller size
 - (C) Decreased nuclear charge & greater size (D) Decreased nuclear charge & smaller size
- **87.** Which of the following statements are correct?
 - (A) The oxides and other compounds of Be and Mg are more covalent than those formed by Ca, Sr, Ba.
 - **(B)** The oxides and other compounds of Be and Mg are less covalent than those formed by Ca, Sr, Ba.
 - (C) The covalent character of the oxides and other compounds of Be and Mg is equal to those formed by Ca, Sr, Ba.
 - **(D)** The oxides and other compounds of Be and Mg are purely ionic in nature & devoid of any covalent character.
- **88.** The alkaline earth metals burn in oxygen to form :
 - (A) monoxide, MO (B) dioxide, MO₂ (C) monoxide, M₂O (D) trioxide, MO₃
- **89.** Which of the following oxides does NOT have rock-salt structure?
 - (A) CaO (B) MgO (C) BaO (D) BeO

*90.	Which of the following statements are correct?												
	(A)	BeO is essen	ntially coval	ent in nature.									
	(B)	The enthalp	ies of forma	tion of the oxide	s of alkalin	e earth metals are	quite hig	gh.					
	(C)	The oxides	of alkaline e	arth metals are u	instable to	heat.							
	(D)	The oxides	of alkaline e	arth metals are v	very stable	to heat.							
91.	Which	of the followi	ng oxide is	amphoteric in na	ture ?								
	(A)	BaO	(B)	CaO	(C)	SrO	(D)	BeO					
92.	Which	of the following	na ovide is l	NOT basic in nat	ture 9								
12.	(A)	BaO	(B)	CaO	(C)	MgO	(D)	BeO					
			, ,										
*93.	All the alkaline earth metal oxides react with water to form sparingly soluble hydroxides.												
	$MO + H_2O \longrightarrow M(OH)_2$ Which of the following statements regarding these hydroxides are true?												
	Which	of the following	ng statemen	ts regarding thes	se hydroxid	es are true?							
	(A)												
	(B)	(B) Their solubility, thermal stability and basic character increases as we go down the group.											
	(C)												
	(D)	They are les	s basic & le	ss stable than the	e correspon	iding alkali metal l	hydroxid	es.					
94.	Beryll	Beryllium hydroxide is amphoteric in nature. This means that it reacts with:											
	(A)	only acids			(B)	only bases							
	(C)	both acids &	bases		(D)	None of the abo	ove						
95.	Halide	es of which of t	he followin	g alkaline earth r	netals are e	essentially covalen	t in natu	re:					
	(A)	Mg	(B)	Ba	(C)	Be	(D)	Ca					
0.0	D 11	. 1 1:1	1.11.1										
96.	(A)	ium halides are Organic solv		: Water	(C)	Both A and B	(D)	None of the above					
97.		tively:			cture X and	l in the vapour st	ate, it te	nds to exist as Y. X and	Y are				
	(A)			bridged dimer	(B)	_		, chain structure					
	(C)	Ring structu	re, chloro-b	ridged dimer	(D)	Chloro-bridged	dimmer	, ring structure					
98.	In the	vapour phase,	BeCl ₂ ten	ds to form a chlo	oro-bridged	l dimer which diss	sociates i	nto the linear monomer	at high				
	tempe	rature of the or	der of:										
	(A)	500 K	(B)	700 K	(C)	900 K	(D)	1200 K					
99.	As we	go down the g	roup, the te	ndency of the ha	lides of the	alkaline earth me	tals to fo	rm hydrates gradually:					
. •	(A)	increases	1,	<i>y</i> == 1112 1141	(B)	decreases	13 10	, <u>B</u> •					
	(C)	remains unc	hanged		(D)	they do not for	n hydrat	es					

- *100. On heating the hydrated chlorides, bromides and iodides of which of the following alkaline earth metals, hydrolysis occurs instead of dehydration?
 - (A) Ca
- **(B)** Mg
- (C) Be
- **(D)** Ba

- **101.** Which of the following statements is correct?
 - (A) The fluorides of the alkaline earth metals are relatively more soluble than the corresponding chlorides due to their low lattice energy.
 - (B) The fluorides of the alkaline earth metals are relatively more soluble than the corresponding chlorides due to their high lattice energy.
 - (C) The fluorides of the alkaline earth metals are relatively less soluble than the corresponding chlorides due to their low lattice energy.
 - (D) The fluorides of the alkaline earth metals are relatively less soluble than the corresponding chlorides due to their high lattice energy.
- *102. Carbonates of alkaline earth metals are insoluble in water and can be precipitated by the addition of a sodium or ammonium carbonate solution to a solution of a soluble salt of these metals. Which of the following statements regarding these carbonates correct?
 - (A) Their solubility in water decreases as the atomic number of the metal ion increases.
 - (B) All of the them decompose on heating to give CO₂ and the oxide.
 - (C) BeCO₃ is unstable and can be kept only in the atmosphere of CO₂.
 - **(D)** Their thermal stability decreases with increasing cationic size.
- 103. The sulphates of the alkaline earth metals are all white solids and stable to heat. BeSO₄ and MgSO₄ are readily soluble in water and the solubility decreases from CaSO₄ to BaSO₄. The reason behind the solubility of BeSO₄ & MgSO₄ is:
 - (A) The hydration enthalpies of Be²⁺ and Mg²⁺ ions overcome the lattice enthalpy factor.
 - (B) The hydration enthalpies of Be^{2+} and Mg^{2+} ion cannot overcome the lattice factor.
 - (C) The hydration enthalpies of Be²⁺ and Mg²⁺ ions are extremely low.
 - **(D)** None of the above
- 104. The nitrates of the alkaline earth metals are made by dissolution of the carbonates in dilute HNO₃. Which of the following statements about these nitrates are correct?
 - (A) The tendency to form hydrates increases with increase in size of the metal ion and decrease in hydration enthalpy.
 - (B) The tendency to form hydrates decreases with increase in size of the metal ion and decrease in hydration enthalpy.
 - (C) All of the alkaline metal nitrates decompose on heating to give the corresponding metal oxide, nitrogen dioxide and oxygen.
 - (D) All of the alkaline earth metal nitrates decompose on heating to give the corresponding metal oxide and nitrogen dioxide.
- 105. The solubility of alkaline earth metal hydroxides in water increases down the group. The reason behind it is that:
 - (A) The lattice enthalpy increases but the hydration enthalpy decreases as we go down the group.
 - **(B)** The lattice enthalpy decreases but the hydration enthalpy increases as we go down the group.
 - (C) The lattice enthalpy decreases much more hydration enthalpy as we go down the group.
 - **(D)** None of the above

- 106. Which of the following statements are correct regarding the solubility of the compounds of alkaline earth metals in H_2O ?
 - (A) The solubility of the hydroxides decreases and that of the carbonates and sulphates increases as we go down the group.
 - **(B)** The solubility of the hydroxides, carbonates & sulphates increases as we go down the group.
 - (C) The solubility of the hydroxides, carbonates & sulphates decreases as we go down the group.
 - **(D)** The solubility of the hydroxides increases and that of the carbonates & sulphates decreases as we go down the group.
- *107. Which of the following observations regarding Be show that it exhibits anomalous behaviour as compared to the rest of the alkaline earth metals?
 - (A) Due to its small size and high ionisation enthalpy, Be forms compounds that are largly covalent and can easily get hydrolysed.
 - (B) Be does not exhibits coordination number more than four.
 - (C) The oxide and hydroxide of Be are basic in nature.
 - **(D)** The oxide and hydroxide of Be are amphoteric in nature.
- 108. The ionic radius of Be²⁺ is estimated to be 31pm. The charge/radius ratio is nearly the same as that of Al³⁺ ion. Hence Be resembles Al in some ways. Some of the similarities are:
 - (A) Both are not readily attacked by acids because of the presence of an oxide film on the surface of the metal.
 - (B) The hydroxides of both the elements dissolve in excess of alkali to give, $[Be(OH)_4]^{2-}$ (beryllate ion) and $[Al(OH)_4]^{-}$ (aluminate ion) respectively.
 - (C) Be²⁺ & Al³⁺ ions have strong tendency to form complexes, BeF₄²⁻ & AlF₆³⁻.
 - **(D)** All of the above
- *109. The chlorides of both Be and Al have Cl bridged chloride structure in vapour phase. Which of the following statements regarding these chlorides are correct?
 - (A) They are insoluble in organic solvents and are strong Lewis acids.
 - **(B)** They are insoluble in organic solvents and are weak Lewis acids.
 - (C) They are soluble in organic solvents and are strong Lewis acids.
 - **(D)** They are used as Friedel Craft catalysts.
- *110. Which of the following are industrially important compounds of Calcium?
 - (A) Quick lime (B) Slaked lime (C) Calcium carbonate(D) Plaster of Paris
- **111.** Calcium oxide is prepared by :
 - (A) Heating gypsum to 393 K. (B) Passing carbondioxide through lime water.
 - (C) Heating limestone in a rotary kiln at 1070 1270 K. (D) None of the above
- 112. On exposure to atmosphere, CaO absorbs moisture and carbon dioxide to form X and Y respectively X and Y are:
 - (A) Calcium hydroxide and Calcium carbonate (B) Calcium carbonate and Calcium hydroxide
 - (C) Calcium sulphate and Calcium hydroxide (D) Calcium hydroxide and Calcium sulphate

113. Consider the following reactions.

$$CaO + SiO_2 \longrightarrow CaSiO_3$$

$$6\operatorname{CaO} + \operatorname{P_4O_{10}} \longrightarrow 2\operatorname{Ca_3}(\operatorname{PO_4})_2$$

Which of the following statement is correct?

- (A) CaO, SiO_2 & P_4O_{10} are basic oxides.
- **(B)** CaO, SiO₂ & P_4O_{10} are acidic oxides.
- (C) CaO is an acidic oxide and $SiO_2 \& P_4O_{10}$ are basic oxides.
- (D) CaO is a basic oxide and $SiO_2 \& P_4O_{10}$ are acidic oxides.

*114. Which of the following are important uses of quick lime?

- (A) Primary material for manufacture of cement (B) Manufacture of Na₂CO₃ from caustic soda
- (C) Purification of sugar (D) Manufacture of dye stuff

115. Ca (OH)₂ or Calcium hydroxide is also known as:

(A) Quick lime (B) Limestone (C) Plaster of Paris (D) Slaked lime

116. Milk of lime is a suspension of slaked lime in :

- (A) Water (B) Alcohol (C) Acid (D) None of the above
- When CO₂ is passed through lime water, it turns milky due to the formation of a compound X as a ppt. When excess of CO₂, the ppt. dissolves to form Y and the milkiness disappears. X and Y respectively:
 - (A) CaO and $Ca(HCO_3)_2$
- (B) CaCO₃ and CaO
- (C) $CaCO_3$ and $Ca(HCO_3)_2$
- (**D**) $Ca(HCO_3)_2$ and CaO

118. Milk of lime reacts with chlorine to form hypochlorite, a constituent of:

(A) Washing soda (B) Baking powder (C) Bleaching powder(D) None of the above

*119. Which of the following are uses of slaked lime?

- (A) used in the preparation of mortar. (B) used in white wash due to its disinfectant nature.
- (C) used in glass making. (D) used in tanning industry & for the purification of sugar.

*120. Calcium carbonate is prepared by :

- (A) passing CO₂ through slaked lime. (B) addition of sodium carbonate to calcium chloride.
- (C) heating gypsum to 393 K. (D) adding water to quick lime.

121. Which of the following statements regarding CaCO₃ is incorrect?

- (A) It is almost insoluble in water (B) When heated to 1200 K, it decomposes to evolve CO₂
- (C) It reacts with dilute acid to liberate CO_2 (D) None of the above

- *122. Which of the following are important uses of calcium carbonate?
 - (A) used as building material in the form of marble.
 - (B) used along with MgCO₃ as a flux in the extraction of metals such as iron.
 - (C) used as antacid.
 - **(D)** used as a mild abrasive in toothpaste.
- **123.** Match the following.

	Co	lumn I			Column II				
	Compo	ound nam	ie		Formula				
(I)	Lim	estone		(p)	CaCO ₃				
(II)	Gyp	sum		(q)	$CaSO_4 \cdot \frac{1}{2}H_2O$				
(III)	Dea	d burnt pl	aster	(r)	$CaSO_4 \cdot 2H_2O$				
(III)	Plas	ter of Pari	is	(r)	CaSO ₄				
	(I)	(II)	(III)	(IV)		(I)	(II)	(III)	(IV)
(A)	p	r	S	q	(B)	q	p	s	r
(C)	p	r	q	S	(D)	S	q	r	p

*124. Which of the following statements are correct?

Plaster of Paris (B)

- (A) Plaster of Paris is obtained when gypsum is heated to 393 K.
- **(B)** Heating gypsum above 393 K causes the formation of anhydrous CaSO₄ which is known as dead burnt plaster.
- (C) Plaster of Paris has a remarkable property of setting with water.
- (D) Plaster of Paris is used in the building industry as well as plasters.

Quick lime

When clay and lime are strongly heated in a rotary kiln, they react to form a clinker. This clinker is mixed with 2–3% by weight of gypsum to form:

(C)

- The important ingredients present in Portland cement are:
- (A) dicalcium silicate

(B) tricalcium silicate

Caustic soda

(C) tricalcium aluminate

(D) All of the above

*127. Cement is used in:

(A)

126.

(A) Concrete

(B) reinforced concrete

(C) plastering

(D) construction of bridges, dams & buildings

(D)

Cement

128. When mixed with water, the setting of cement takes place to give a hard mass. This is due to the hydration of the molecules of the constituents & their rearrangement. Which of the following compounds is added to cement to slow down its setting so that it get sufficiently hard?

(A) Plaster of Paris (B)

B) Quick lime

(C) Slaked lime

(D) Gypsum

129. Chlorophyll is the main pigment for the absorption of light in plants. It contains X. X is also required as the cofactor for all enzymes that utilise ATP in phosphate transfer. X is:

(A) Sodium

(B) Calcium

(C) Potassium

(D) Magnesium

*130.	 The important functions of calcium in our bodies is: (A) It is present in bones & teeth. (B) It plays important roles in neuromuscular function and interneuronal transmission. 										
	(B) (C) (D)		in cell men	nbrane integrity.		and interneuronal	transmiss	sion.			
*131.	The ca	nleium concentra	tion in plas	ma is regulated	at about 1	$00\mathrm{mg}\mathrm{L}^{-1}$. It is m	aintained	by the two hormones:			
	(A)	calcitonin	(B)	cortisol	(C)	parathyroid	(D)	insulin			
132.		of the following	statement	is incorrect?							
	(A)	-		ging substance							
	(B)	Bone is not ar	inert, unc	hanging substan	ce						
	(C)	Bone is contin	nuously bei	ng solubilised a	nd redepos	ited in man					
	(D)	None of the al	oove								
		Γ		p-Blo	ck Eleme	nts - I	<u></u>	1.6			
		L		<u> </u>							
Group	- 13										
1.	In <i>p</i> - b	olock elements, tl	ne electron	enters the outer	most:						
	(A)	f orbital	(B)	d orbital	(C)	s orbital	(D)	p orbital			
2.	The va	alence shell elect	ronic confi	guration of p blo	ock elemer	nts (except He) is:					
	(A)	$(n-1)s^2np^{1-\epsilon}$		$ns^{0-2}np^{1-6}$	(C)	ns^2np^{1-6}	(D)	ns^2np^{0-6}			
3.	The m	aximum oxidatio	on state sho	own by a p-block	element i	s equal to :		-			
	(A)	Number of <i>p</i> -0				1					
	(B)	Number of s-c	electrons in	valence shell							
	(C)	Sum of the <i>s</i> -	and p - elec	ctrons in valence	shell						
	(D)	Difference in	the number	r of s- and p- ele	ctrons in v	alence shell					
4.	Which	of the following	statement	s is(are) correct	regarding	the boron, carbon	and nitro	gen families ?			
	I.					or the lighter elem		_			
	II.	-				•		rogressively less stable	e for the		
		heavier eleme	nts								
	The co	orrect choice is:									
	(A)	Only I	(B)	Only II	(C)	I and II	(D)	Neither I nor II			
5.	In whi	ch block(s) of th	e periodic	table do non-me	tals and m	etalloids exist ?					
	(A)	s and p blocks	•	Only p block	(C)	d block	(D)	f and p blocks			
	3371 1 1	0.1 0.11		. 6							
*6.	Which of the following statements are correct?										
	 (A) The lightest element in each p-block in the most metallic in nature. (B) The heaviest element in each p-block is the most metallic in nature 										
	(B) (C)					igher electronega	tivities th	an metals			
	(C)		_		_	aver electronegati					

- *7. Which of the following statements are correct?
 - (A) The second period elements of p- groups starting from boron are restricted to a maximum covalence of two
 - **(B)** The second period elements of *p* groups starting from boron have vacant 2*d* orbitals and so can expand their covalence beyond four.
 - (C) The second period elements of p- groups starting from boron are restricted to a maximum covalence of four
 - (D) The third period elements of p-groups have vacant 3d orbits and so can expand their covalence beyond four
- ***8.** Which of the following statements are correct regarding *p*-block elements?
 - (A) All the p-block elements form strong $p\pi p\pi$ multiple bonds to themselves
 - (B) The first member of a group differs from the heavier member in its ability to form $p\pi p\pi$ multiple bonds to itself
 - (C) The heavier elements form $d\pi p\pi$ or $d\pi d\pi$ bonds
 - (D) The first members of the group form $d\pi p\pi$ or $d\pi d\pi$ bonds
- 9. Boron is a fairly rare element and occurs mainly as the following compounds. Match the following compounds with their chemical formulae.

(P)	Orthoboric acid	(i)	Na ₂ B ₄ O ₇ .4H ₂ O
(Q)	Borax	(ii)	H ₃ BO ₃
(R)	Kernite	(iii)	Na ₂ B ₄ O ₇ .8H ₂ O
		(iv)	H ₃ BO ₄
		(v)	Na ₂ B ₄ O ₇ .10H ₂ O
	D 0		

P Q R
(A) (ii) (i) (iii)

P Q R
(B) (ii) (v) (i)

(C) (iv) (v) (iii)

- $\begin{array}{cccc} \textbf{(D)} & \textbf{(ii)} & \textbf{(v)} & \textbf{(i)} \\ \textbf{(D)} & \textbf{(iv)} & \textbf{(i)} & \textbf{(v)} \end{array}$
- 10. Which of the following is the most abundant metal and the third most abundant element in the earth's crust?
 - (A) Boron
- (B) Aluminium
- (C) Lead
- **(D)** Bismuth

- *11. Boron exists in which of the following isotopic forms?
 - (**A**) 10 B
- **(B)** 11 B
- (C) ⁹B
- **(D)** 12 B

- *12. The important minerals of aluminum are:
 - (A) Bauxite

(B) Buckminsterfullerene

(C) Cryolite

- (D) Borax
- 13. The outer shell electronic configuration of Group 13 elements is:
 - (A) ns^2np^2
- **(B)** ns^2np^1
- (C) ns^2np
 - ns^2np^3 (D) $(n-1)s^2np^3$
- *14. The outer electronic configuration of group 13 elements is ns^2np^1 . Which of the following statements are correct regarding the electronic configuration of the group 13 elements?

19

- (A) Boron has noble gas core
- **(B)** Gallium has noble gas plus 10 *d*-electrons core
- (C) Indium and thallium have noble gas plus 14 d-electrons plus 10 d-electron cores
- (D) Aluminium and gallium have noble has plus 10 *d*-electrons core

- *15. Which of the following statements are true?
 - (A) The atomic radius of Ga is more than Al (B) the atomic radius of In is more than Ga
 - (C) The atomic radius of In is less than Ga (D) the atomic radius of Ga is less than Al
- 16. Which of the following is the correct order of ionic radius of group 13 elements?
 - (A) $B^{3+} < Al^{3+} < Ga^{3+} > In^{3+} < Tl^{3+}$
- **(B)** $B^{3+} < Al^{3+} > Ga^{3+} > In^{3+} < Tl^{3+}$
- (C) $B^{3+} < Al^{3+} < Ga^{3+} < In^{3+} < Tl^{3+}$
- (**D**) $B^{3+} < Al^{3+} > Ga^{3+} < In^{3+} < Tl^{3+}$
- 17. The atomic radius of Ga is less than that of Al. This is due to:
 - (A) high penetration power of s-orbital
 - **(B)** poor screening effect of the additional 10 d electrons present in Al
 - (C) high screening effect of the additional 10 d-electrons present in Al
 - (D) poor screening effect of the additional 10 d-electrons present in Ga
- *18. Which of the following statements regarding ionization enthalpy values of Group 13 elements correct?
 - (A) It decreases from B to Al due to increase in size
 - **(B)** It increases from Al to Ga and also from In to Tl due to high screening effect of d and f-electrons
 - (C) The order of the first three ionisation enthalpies for each element is $\Delta_i H_1 < \Delta_i H_2 < \Delta_i H_3$
 - (D) Thallium has the highest ionisation enthalpy value in the group
- *19. Which of the following statements is(are) correct?
 - (A) Boron is a hard metal having unusually high melting point.
 - **(B)** Apart from boron, all the elements of group 13 are soft metals with low melting point and high electrical conductivity
 - (C) The high boiling point of Ga makes it a useful material for measuring high temperatures
 - (D) The density of the elements decreases down the group from B to Tl
- *20. Which of the following statements is(are) correct?
 - (A) Due to the small size of B, the sum of its first three ionisation enthalpies is very high.
 - **(B)** B forms B³⁺ ions fairly easily and so most of its compounds are ionic in nature
 - (C) As we move from B to Al the sum of the first three ionisation enthalpies of Al considerably decreases
 - (D) The relative stability of the +1 oxidation state progressively decreases for heavier elements: Al > Ga > In > Tl
- *21. The electron deficient molecules such as BF₃ have a tendency to accept a pair of electrons to achieve stable electronic configuration. Which of the following statements regarding them are true?
 - (A) They behave as Lewis bases
 - **(B)** They behave as Lewis acids
 - (C) The tendency to accept electrons increases with increase in the size down the group
 - (D) The tendency to accept electrons decreases with increase in the size down the group
- *22. Group 13 elements such as amorphous boron and aluminium metal on heating in air form B₂O₃ and Al₂O₃. Which of the following statements regarding these oxides true?
 - (A) B_2O_3 is basic in nature and reacts with acidic oxides forming metal borates
 - (B) B_2O_3 is acidic in nature and reacts with basic oxides forming metal borates
 - (C) Aluminum and gallium oxides are basic in nature.
 - **(D)** Indium and thallium oxides are basic in nature.

23.	Which (A) (B)	_	gorously v	` '	kalis at mo	oderate temperatur H ₂	re.	
	(C)	Aluminium reac	ets with aq	ueous alkali and	liberates	H_2		
	(D)	Aluminium diss	solves in co	one HCl and libe	erates H ₂			
24.	Alumin (A)	ium reacts with a Na[Al(OH)4]	queous N (B)	aOH to liberate Na[Al(OH) ₃]	H ₂ gas an (C)	d form a complex Na ₂ [Al(OH) ₄]	. The form (D)	nula of this complex is: Na ₂ [Al(OH) ₃]
25.	Group (A)	13 elements react monohalides	with halo	gens to form : dihalides	(C)	trihalides	(D)	tetrahalides
26.	White f (A) (B) (C) (D)	water vapour fo vaporized alumi HCl gas forme	rmed due inium chlo d due to p	to partial hydrol oride artial hydrolysis	ysis of alu	m chloride. These minium chloride ium chloride by a de with oxygen pr	by atmosp	pheric moisture
27.	The ma	ximum covalence	e of boron (B)	is 5	(C)	3	(D)	6
28.	I. II. III.		s exist as d the Group I trihalides	p 13 elements ex		n exist as monomo e metal completes I and II		by accepting electrons from Only III
29.	Boron i (A) (B) (C) (D)	s unable to form B cannot expand B expands its od B expands its od B is unable to expands	d its octet etet due to etet due to	due to non availavailability of d	ability of - orbitals - orbitals			
30.	Borax i (A) (C)	s a white crystalli a mildly acidic s a neutral <mark>sol</mark> utio	solution	f formula Na ₂ B ₂ (B) (D)	an alka	it dissolves in w line solution or alkaline solutio		ve:
31.		es into glass like r $Na_2B_4O_7 \cdot 10H$ $Na_2B_4O_7 \cdot 10H$	material ki $_2$ O $\xrightarrow{\Delta}$		ead. The o → NaBO → NaBO	orrect equations for $A_3 + B_2O_3$ $A_2 + B_2O_6$		into a transparent liquid which
	(D)	Na ₂ B ₄ O ₇ ·10H	$I_2O \xrightarrow{\Delta}$	→ Na ₂ B ₄ O ₈ — Δ	→ NaBO	$_2 + B_2O_6$		

23.

- 32. The metaborates of many transition metals have characteristic colours and therefore borax bead test can be used to identify them in the laboratory. When borax is heated in a Bunsen burner flame with Co on a loop of Pt wire,
 - (A) a green colored $Co(BO_3)_2$ bead is formed (B) a red colored $Co(BO_2)_2$ bead is formed
 - (C) a blue colored Co(BO₂)₂ bead is formed (D) a blue colored Co(BO₃)₂ bead is formed
- 33. Which of the following statements regarding orthoboric acid (H_3BO_3) incorrect?
 - (A) It is sparingly soluble in water but highly soluble in hot water
 - (B) It can be prepared by acidifying an aqueous solution of borax or by hydrolysis of most boron compounds (halides, hydrides etc.)
 - (C) It has a layer structure in which planar BO₃ units are joined by hydrogen bonds
 - **(D)** None of the above
- **34.** Identify the correct statements
 - (A) Boric acid is a weak tribasic acid
 - (B) It acts as a protonic acid
 - (C) It acts as a Lewis acid by accepting electrons from a hydroxyl ion
 - (D) On heating orthoboric acid above 370K metaboric acid is obtained which on further heating yields boric acid B₂O₃
- *35. Diborane is prepared by
 - (A) treating boron trifluoride with NaOH in diethyl ether.
 - **(B)** treating boron trifluoride with LiAlH₄ in diethyl either
 - (C) oxidation of sodium borohydride with iodine
 - (**D**) reaction of BF₃ with sodium hydride.
- **36.** Identify the incorrect statements:
 - (A) Diborane is highly resistant to fire and is used in fire proofing materials
 - (B) Diborane catches fire spontaneously upon exposure to air and burns in oxygen, releasing an enormous amount of energy
 - (C) Diborane undergoes cleavage reactions with Lewis bases to give borane adducts
 - **(D)** B₃N₆H₆ is also known as "inorganic benzene"
- 37. In diborane, the four terminal B-H bonds and the two bridge (B-H-B) bonds are :
 - (A) Both two centre-two electron bonds
 - **(B)** Both three centre-two electron bonds
 - (C) Two centre two electron bonds and three centre-two electron bonds respectively.
 - (D) Three centre-two electron bonds and two centre-two electron bonds respectively.
- **38.** Lithium and sodium tetrahydridoborates are prepared by:
 - (A) reaction of the metals with boron
 - **(B)** reaction of the metal hydrides with orthoboric acid
 - (C) reaction of metal hydrides with boron in diethyl ether.
 - **(D)** reaction of metal hydrides with diborane in diethyl ether
- **39.** LiBH₄ and NaBH₄ are used in organic synthesis as:
 - (A) dehydrating agents (B) reducing agents (C) oxidizing agents (D) halogenating agents

*40.	Whic	h of the following	g uses of b	oron are correct?	•				
	(A)	Boron fibers a	re used in	making bulletpro	oof vest an	d light composi	te material	for aircraft	
	(B)	Boron-10 in the	ne form of	metal borides is	used as co	ntrol rods in the	nuclear inc	lustry	
	(C)	Borax and bor	ric acid are	e used for making	g heat-resis	tant glasses, gla	ss wool and	d fiberglass	
	(D)	An aqueous so	olution of	orthoboric acid is	generally	used as a mild a	antiseptic		
Cra	. 1/								
Group 41.		n of following is:	a radioacti	ve isotope of carl	hon?				
11,		¹² C		13 _C		¹⁴ C			
	I.	_	II.		III.	1.0			
		orrect choice is:	(D)	T TT 1 TT	(60)	0.1 III	(D)	п 1 п	
	(A)	Only II	(B)	I, II and III	(C)	Only III	(D)	II and III	
42.	Which	n of the following	is the sec	ond most abunda	nt element	on the earths cr	rust ?		
	(A)	Aluminium	(B)	Silicon	(C)	Oxygen	(D)	Hydrogen	
43.		_	•	ost significant or					
	(A)	Galena and cir		-	(B)	Galena and c			
	(C)	Cinnabar and	galena res	pectively	(D)	Cassiterite an	id galena re	spectively	
44.	Ultra	pure form of Ge	and Si are	e used to make:					
	(A)	Aeroplane par							
	(B)			ductor devices					
	(C)			nt glazed coating	of earther	iwares			
	(D)	Heat resistant		8					
45.	The v	alence shell elect	ronic conf	iguration of Grou	ıp 14 elem	ents is:			
	(A)	ns^2np^6	(B)	ns^2np^1	(C)	ns^2np^2	(D)	ns^2np^3	
46.		•	` '	in covalent radius		e Si thereafter	` ,	Pb a small increase in radius	is
		ved. This is due to		in covarent radius	, mom e u	e Si, increasion	nom 51 to	1 o a sinan merease in radius	15
	(A)			illed d and f orbit	als in heav	ier members			
	(A) (B)		-	filled s and p orbi					
	(C)	•	•	illed s and p orbit					
	(D)		•	filled d and f orbi					
	(D)	presence of ec	mpretery	imed a and j oron	uis iii nea	vici incinocis			
47.	Small	decrease in $\Delta_i H$	from Si t	o Ge to Sn and sl	ight increa	ise in Δ_i H from	n Sn to Pb i	s the consequence of:	
	(A)	poor shielding	geffect of	intervening d and	f orbitals	and decrease in	size of the	atom	
	(B)	strong shielding	ng effect o	of intervening d and	nd f orbital	s and increase is	n size of the	e atom	
	(C)	poor shielding	geffect of	intervening d and	f orbitals	and increase in	size of the	atom	
	(D)	strong shielding	ng effect o	of intervening d and	$\operatorname{nd} f$ orbital	s and decrease i	n the size o	of the atom	
*48.	Whiel	n elements among	st the foll	owing are nearly	equally ele	ectronegative ?			
	(A)	Carbon	(B)	Silicon	(C)	Germanium	(D)	Tin	
40			` ´						
49.		•		nts to exhibit $+2$			_		
	(A)	Ge < Sn > Pb	(B)	Ge < Sn < Pb	(C)	Ge > Sn > Pb	(D)	Ge > Sn < Pb	

50.	As we (A) (B) (C) (D)	the participation the participation the inability of	n of ns^2 e n of d -ele ns^2 electr	dency of Group lectrons of valence extrons of penulting ons of valence shows of valence shows	ce shell in mate shell nell to part	bonding in bonding icipate in bondir	ng	ate increases due to:	
51.	Sn in - (A) (C)	+2 stable is : an oxidising ag A or B dependi		substrate	(B) (D)	a reducing age			
52.	Which (A) (B) (C) (D)	Pb compounds Pb compounds	in +2 stat in +4 stat in +2 stal	es are true? te are stable and i te are stable and i ble are stable and te are stable and i	n +2 state in +4 stat	are strong oxidi	sing agent lising ager	nts	
53.	Tetrav (A) (C)	alent compounds of electron donors electron precise		14 elements (e.g.	CCl ₄) are (B) (D)	electron accep		ling on the element	
54.		s of Group 14 eling electron pairs s orbitals		`				endency to form com	plexes by
55.	What a	are the main two ty MO and MO ₃	ypes of o	xides of Group 14 MO and MO ₂	4 elements (C)	s? MO ₂ and MO	(D)	MO ₂ and MO ₄	
56.	I. II. III.	SnO ₂ and PbO ₂	er oxidati are acidi		ents are ge SiO ₂ and C	enerally more aci GeO ₂ are amphot	idic than theric in nat	nose in lower oxidatio ure I and III	ns states
57.	Tin de (A) (C)	composes steam to Tin (II) oxide a Tin (II) hydrox	nd hyd <mark>ro</mark>	gen gas	(B) (D)	Tin (IV) oxide Tin (IV) hydr	-	ogen gas	
58.	Which (A)	of the following of Si	elements (B)	does not react dir Ge	ectly with (C)	halogen under s	suitable co (D)	ndition to form halide Sn	es?
*59.	Which (A)	of the following to PbF ₄	tetrahalid (B)	es are ionic in na CCl ₄	ture?	SnCl ₄	(D)	SnF ₄	
*60.	Which (A) (B) (C) (D)	orbital to have a Heavier member GeX ₂ in more s	e Pb – I four unpa ers of Gro table the	bond releases end aired electrons are oup 14 tend to ma in GeX ₄ whereas I	ound lead ke halides PbX ₂ is les	atom. s of the formula less stable then Pb.	MX_2 . X_4 .	and excite one of them	
		=		s from oxygen ato		-			

24

61.	(A) (C)	lysis of SiCl ₄ lead SiH ₄ (silicon hy SiO ₂ (silicon di	ydride)	on of: (B) (D)	Si(OH) ₄ (si SiO ₃ (silico	ilicic acid) on trioxide)		
62.	[SiF ₆] ²	2- is known when	reas $[SiCl_6]^{2-}$ is	s not. This is becau	se:			
	(A)	Six large chlori	ide ions cannot b	e accommodated a	round Si ⁴⁺ du	e to limitation	n of its size.	
	(B)	Interaction bety	ween lone pair of	f Cl ⁻ ion and Si ⁴⁺ i	s not very stro	ng.		
	(C)	Both A and B	•	(D)	None of the	_		
*63.	Carbo	n differs from the	rest of the memb	pers of its group du	e to:			
	(A)	Its smaller size	;	(B)	Its higher e	electronegativ	rity o	
	(C)	Its higher ioniz	zation enthalpy	(D)	Unavailabi	lity of d orbit	als	
64.	Carbo	n has the unique a	ability to form pπ	τ – pπ multiple bo	onds with itself	and with other	er atoms of small si	ze and
	higher	electronegativity						
	On the	other hand heavi	er elements do n	ot form $p\pi - p\pi$ be	onds because:			
	(A)	Their atomic or	rbitals are too sm	nall and diffuse to h	nave effective of	overlapping.		
	(B)	Their atomic or	rbitals are too lar	ge and diffuse to h	ave effective o	verlapping		
	(C)		depending on the	e element				
	(D)	None of the abo	ove.					
65.	Carbo	n atoms have th	e tendency to 1	ink with one and	other through	covalent bon	ds to form chains	s and rings.
		roperty is called:						
	(A)	Resonance	(B) Hybi	ridization (C)	Stereoisom	nerism (D)	Catenation	
66.	The or	der of Group – 14	4 elements to exh	ibit catenation is:				
	(A)	$C \ll Si > Ge \approx$	≈ Sn	(B)	C ≫ Si <	Ge ≈ Sn		
	(C)	$C \gg Si > Ge \approx$	≈ Sn	(D)	C < Si ≪	Ge≈ Sn		
*67.	Which	of the following	are allotropic for	rms of carbon?				
	(A)	Graphite	(B) Dian	nond (C)	Zeolite	(D)	Fullerenes	
68.	In the	crystalline allot	crope of carbon	diamond each o	earbon atom i	ındergoes wi	nich of the follow	ving type of
00.		ization?	rope of caroon,	diamona, caen	aroon arom c	maergoes wi	non of the follow	ing type of
	(A)		$\mathbf{(B)} \qquad \mathrm{sp}^3$	(C)	sp	(D)	dsp^2	
69.	Why d	oes diamond have	e high melting po	oint despite being o	covalent?			
	(A)			weak C – C bonds				
	(B)	It has a 3-D net	twork involving	strong C – C bond	S			
	(C)		_	weak C - C bonds				
	(D)	It has a 2-D net	twork involving	strong C – C bonds	5			
70.	Which	of the following	substance is the l	hardest in the world	d?			
	(A)	Graphite		(B)	Buckminst	er fullerene		
	(C)	Diamond		(2)	Silicates	er runerene		

*71.	Which (A) (B) (C) (D)	It has lay Each lay Each car The vale	er structer is control bon atomice ele	cture and tomposed of the composed of the comp	the layer f planar nexagon involve	ng graphite is(ard rs are held by co- hexagonal rings al ring undergoe and in the sigma be ectricity.	valent bor on carbor s sp ³ hybr	nds. n atoms idisation		the whole she	eet due to which
72.	Fullerer (A) (B) (C) (D)	passing s	of diam steam o of grapl	ond in an over red ho	t coal electric	arc in the present	e of inert				
73.	Among (A)	the follow diamond	_	otropes of (B)	carbon graphi	which is the most te (C)	st purest f fuller		arbon ? (D)	coke	
74.	Which (A)	of the follo	owing r	represents (B)	Buckmi C ₇₀	inster fullerene ?	C ₆₀		(D)	C ₆₅	
75.	The nur (A)	mber of siz		bered rings (B)	s and five 20 and	ve – membered r	ngs prese 18 an		ckminster (D)	fullerene are 26 and 12	respectively:
*76.	Which (A) (B) (C) (D)	A six me a five me The carb The elec orbitals	embered embered oon ator tron on which i	d ring is fu d ring. ns are sp ² each carb n turn give	hybridizon atom		nbered rin volved in the	ng but a sigma bo ule.	onds remai	ns delocalised	
77. 78.	(A)	graphite		(B)	diamo	ope of carbon is: nd (C) the process by w	fuller		(D)	coke	
70.	TVICTO (Column		OII WILII	the process by w		olumn I]
	(P)	Carbon	-		1	Heating wood a				sence of air	_
	(Q)	Charcoa			2	Burning hydrod					-
	(R)	Coke			3	Heating coal at	high tem	peratures	s in the abs	sence of air	
	(A) (C)	P 1 3	Q 2 1	R 3 2		(B) (D)	P 2 3	Q 1 2	R 3		-

79. Match the following forms of carbon with their uses:

	Column I		Column II
(P)	Graphite	1	Making crucibles which are inert to dilute acids and alkalies.
(Q)	Activated charcoal	2	Used as a fuel and also as a reducing agent in metallurgy
(R)	Carbon black	3	Used in adsorbing poisonous gases as well as in air conditioning systems to control odour.
(S)	Coke	4	Used as black pigment in black ink and as filler in automobile tyres.

	P	Q	R	S		P	Q	R	\mathbf{S}
(A)	1	2	3	4	(B)	2	4	1	3
(C)	3	1	2	4	(D)	1	3	4	2

- **80.** On a small scale, pure CO is prepared by :
 - (A) dehydration of acetic acid with conc. H₂SO₄ at 373 K.
 - **(B)** dehydration of acetic acid with NaOH at 373 K.
 - (C) dehydration of formic acid with conc. H₂SO₄ at 373 K.
 - (**D**) dehydration of formic acid with NaOH at 373 K.
- *81. Which of the following statements regarding water gas is(are) true?
 - (A) It is also known as producer gas. (B) It is an industrial fuel.
 - (C) It is also known as synthesis gas. (D) It causes green house effect.
- **82.** Water gas is prepared by:

 CO_2

- (A) passing air over hot coke (B) passing steam over hot coke
- (C) oxidation of C in limited supply of oxygen (D) All of the above

H₂O (steam)

*83. Water gas or synthesis gas is a mixture of which of the following gases?

(B)

*84. Producer gas is:

(A)

- (A) prepared by passing air over hot coke
- **(B)** an important industrial fuel
- (C) obtained by passing air over heated limestone
- (**D**) a mixture of CO, N_2 and H_2
- *85. Which of the following statements about carbon monoxide correct?
 - (A) It is highly water soluble
 - **(B)** It is a very powerful reducing agent
 - (C) It reduces all the metal oxides including those of the alkali and alkaline earth metals
 - (D) It acts as a donor molecule and reacts with certain metals when heated to form metal carbonyls

(C)

(D)

 H_2

- **86.** CO is used in the extraction of many metals from their oxide ores due to its
 - (A) oxidising property (B) reducing property
 - (C) ability to form metal carbonyls (D) B and C

87.		mber of sigma and	l pi bonds				-					
	(A)	2 and 1	(B)	1 and 2	(C)	1 and 1	(D)	2 and 0				
88.	CO acts	s as a donor and re			hen heate		•					
	(A)	presence of lone	-		(B)	presence of lo	ne pair on	carbon				
	(C)	the electron deficiency of carbon (D) the electron deficiency of oxygen										
89.	The hig	hly poisonous nat										
	(A)	haemoglobin con	mplex.				times less	stable than the oxyg	gen			
	(B)	of its ability to e	ffect the	functioning of the	e voluntai	ry muscles.						
	(C)	of its ability to for haemoglobin con		mplex with haem	oglobin w	which is about 30	0 times mo	ore stable than the or	xygen –			
	(D)	of its ability to ta	rigger hea	art attacks.								
*90.	CO ₂ is	obtained by:										
	(A)	direct oxidation	of C in li	mited supply of o	oxygen or	air.						
	(B)	Complete combi	ustion of	carbon and carbo	n contain	ing fuels in exce	ss of air.					
	(C)	Heating limestor	ne									
	(D)	Photosynthesis.										
91.	In the la	aboratory, CO ₂ is j	prepared	by:								
	(A)	dehydration of o	xalic acio	d with conc. H ₂ So	O ₄ (B)	action of dil H	Cl with Ca	aCO_3				
	(C)	treatment of zinc	with dil	H ₂ SO ₄	(D)	reaction of alk	ali metals	with oxygen				
*92.	Which	of the following st	tatements	regarding CO ₂ to	rue?							
	(A)	It is a colourless	gas with	a pungent odour								
	(B)	It is very highly	soluble in	n water which ma	akes it of	immense biocher	mical and g	geo-chemical impor	tance.			
	(C)	In solid form it i	s known	as dry ice								
	(D)	It is not poisono	us.									
*93.	With w	ater, CO ₂ forms ca	arbonic a	cid Which of the	following	statements rega	rding carb	onic acid are true?				
	(A)	It's formula is H	$[_3CO_3$		(B)	It is a tribasic	acid					
	(C)	It is a dibasic ac	id		(D)	It combines w	ith alkalies	to form metal carbo	onates			
94.	The H ₂	2CO ₃ /HCO ₃ buf	fer syster	n helps to mainta	in pH of	blood between:						
	(A)	6.42 to 6.91	(B)	5.90 to 6.31	(C)	7.26 to 7.42	(D)	8.27 to 9.59				
*95.	Which	of the following st	tatements	are correct?								
	(A)	7			carbohy	drates such as gl	ucose by a	process called trans	spiration.			
	(B)	•		ent of the atmosph		_	•	•	•			
	(C)			gerant for ice crea								
	(D)	-	_	, pports combustio			isher.					
96.	Which	of the following g	ases is us	sed in the manufa	cture of u	rea ?						
	(A)	SO ₂	(B)	CO	(C)	SO_3	(D)	CO_2				
97.	In CO ₂	molecule, C atom	undergo	es which type of	hybridiza	tion ?						
	(A)	sp^2	(B)	sp	(C)	sp^3	(D)	dsp^2				
	. ,	1		1		1	` '	1				

				Vidya	mandir C	lasses			
98.	Which (A)	of the followin	g molecule (B)	s have no dipole :		CO	(D)	Both A and B	
		_	. ,	_	(C)	CO	(D)	Doui A and D	
99.		n dioxide (SiO ₂)							
	(A)	Silicone	(B)	Silicate	(C)	Silica	(D)	Zeolite	
*100.	Which	of the followin	g are crysta	alline form of SiC	O_2 ?				
	(A)	Quartz	(B)	Cristobalite	(C)	Tridymite	(D)	Kieselghur	
101.	Which	of the followin	g statemen	ts are correct?					
	(A)		-	dimensional netw	ork solid.				
	(B)			tly bonded in a te		manner to four o	oxygen ator	ms	
	(C)	The entire sil	lica crystal	may be considered	ed as a gia	nt molecule in v	which six m	nembered rings are formed wit	h
		alternate Si a	nd O atoms	S.					
	(D)	All of the abo	ove						
*102.	Which	of the followin	g statemen	ts regarding silica	a correct?				
	(A)		_	because of very		O bond enthalpy	<i>i</i> .		
	(B)			nuse of low Si – C	_				
	(C)			H ₂ , most acids an			ture.		
	(D)	It resists the	attack by ha	alogens, H ₂ , most	acids and	metals even at	elevated ter	mperatures	
103.	What l	nappens on addi	ition of Na(OH to silica?					
	(A)	Na ₂ SiO ₄ is fo			(B)	Na ₂ SiO ₃ is fo	ormed		
	(C)	Na ₂ SiO ₂ is fo			(D)	No reaction of			
104.	What i	s obtained on tr	reatment of	SiOo with HF?					
104.	(A)	SiF ₂	(B)	SiF ₃	(C)	SiF	(D)	SiF ₄	
*105.	Ouartz	is used:							
	(A)	as a piezoele	ctric materi	al	(B)	as a pyroelec	tric materia	ıl	
	(C)	to develop ex			(D)	in mobile rad			
106.	Which	of the followin	g statemen	ts regarding silica	a gel corre	ct?			
100.	I.	It is used as a	_		. gci come	···			
	II.			or chromatographi	ic material	s and catalysts			

107. X is an amorphous form of silica used in filtration plants. X is:

(A) quartz (B) cristobalite (C) tr

Only II

A) quartz (B) cristoban

cristobalite (C) tridymite (D) Kieselghur

I and II

(D)

*108. Silicones:

(A)

Only I

(A) are a group of organosilicon polymers.

(B) have (R_3SiO) as repeating unit

(C) are made from alkyl or aryl substituted chlorides.

(D) are water repelling in nature

(C)

Neither I nor II

109. $2\text{CH}_3\text{Cl} + \text{Si} \xrightarrow{X} Y \xrightarrow{+2\text{H}_2\text{O}} (\text{CH}_3)_2 \text{Si}(\text{OH})_2 \text{ X and Y are respectively :}$

(A) Cu and CH₃SiCl₃

(B) Fe and CH₃SiCl₃

(C) Cu and (CH₃)₂SiCl₂

(D) Fe and $(CH_3)_2SiCl_2$

*110 Silicones:

- (A) have high thermal stability
- (B) have high dielectric strength
- **(C)** are resistant to oxidation and chemicals
- **(D)** are hydrophilic in nature.

111. Feldspar, zeolites, mica and asbestos are types of

- (A) Silica
- (B) silicones
- (C) silicates
- (D) fullerenes

*112. Which of the following statements regarding silicates is(are) true?

- (A) The basic structural unit of silicates is SiO_4^{3-}
- (B) When silicate units are linked together, they form chain, ring, sheet or three dimensional structures.
- (C) Negative charge on silicate structure is neutralized by positively charged metal ions
- (D) Since silicates are biocompatible, they are used in surgical plants.

*113. Which of the following are man-made silicates?

- (A) glass
- (B) marble
- (C) cement
- (D) nylon

114. If aluminium atoms replace few silicon atoms in 3-D network of SiO₂, the overall structure:

- I. is known as aluminosilicate
- II. acquires a positive charge

Which of the above is(are) correct

- (A) Only I
- (B) Only II
- (C) I and II
- (D) None

115. Which of the following is used to convert alcohols directly into gasoline?

- (A) Quartz
- (B) Feldspar
- (C) Asbestos
- **(D)** ZSM-5

*116. Zeolites are used:

- (A) as catalyst in petrochemical industries
- **(B)** as ion exchangers in softening of 'hard' water
- (C) for cracking of hydrocarbons and isomerization
- **(D)** as drying agent.

p-Block Elements - II

Group - 15

*1. On the earth, nitrogen occurs as:

(A) molecular nitrogen in the atmosphere

(B) Chile saltpetre

(C) Indian saltpetre

(D) proteins in plants and animals

2. The formula of a phosphorus containing mineral, fluorapatite is:

(A) $Ca_9(PO_4)_6.CaF_6$ (B)

 $Ca_9(PO_4)_4.CaF_2$ (C)

 $Ca_9(PO_4)_6.CaF_2$ (D)

 $Ca_9(PO_4)_4.CaF_6$

3. Arsenic, antimony and bismuth are mainly found as:

(A) Carbonate minerals

(B) Free metals

(C) Sulphide minerals

(D) Oxide minerals

4. The valence shell electronic configuration of Group 15 elements is :

(A) ns^2np^2

(B) $(n-1)s^2np^3$

(C)

 $(n-1)s^2np^2$

(**D**) ns^2np^3

5. The electronic configuration of Sb is:

(A) $[Xe]4f^{14}5d^{10}6s^26p^3$

(B) $[Kr]4d^{10}5s^25p^3$

(C) $[Ar]3d^{10}4s^24p^3$

(**D**) $[Xe]4d^{10}5s^25p^3$

6 The order of the first ionization enthalpy of the Group 15 elements is:

(A) $N < P \gg As > Sb > Bi$

(B) N > P > As > Sb > Bi

(C) N < P < As < Sb < Bi

(D) N > P > As < Sb < Bi

7. The order of increasing melting points of Group 15 elements is:

(A) N > P > As > Sb > Bi

(B) N < P > As > Sb > Bi

(C) N < P < As > Sb > Bi

(D) N < P < As < Sb < Bi

8. There is considerable increase in covalent radius from N to P. However, from As to Bi only a small increase in covalent radius is observed. This is due to the presence of:

(A) vacant d and/or f orbitals in heavier members.

(B) fully filled s and/or p orbitals in heavier members.

(C) vacant s and/or p orbitals in heavier members.

(D) fully filled d and/or f orbitals in heavier members.

*9. The ionization enthalpy of group 15 elements is much greater than group 14 elements in the corresponding periods.

This is because of:

(A) extra stability of half – filled p orbitals

(B) extra stability of half – filled d orbitals

(C) less stability of half – filled p orbitals

(D) smaller size of Group 15 elements as compared to Group 14 elements.

10. The order of electronegativity of Group 15 elements is :

(A) N > P > As < Sb < Bi

(B) $N > P > As > Sb \approx Bi$

(C) N > P > As > Sb >> Bi

(D) N > P > As > Sb < Bi

11.	Which	of the following s	tatements regardin	ng Group 15 elem	ents are NOT ti	rue ?		
	(I)		•	b are metalloids a				
	(II)		•	top to bottom in tl				
	(III)			arsenic and then i		ismuth.		
	(IV)		, all the elements		•			
	(A)	I and IV	(B) II and		II and III	(D)	III and IV	
*12.	Which	of the following a	re commonly exh	ibited oxidation st	ates of Group 1	15 elements	?	
	(A)	+3	(B) −3	(C)	+ 5	(D)	-5	
*13.	Which	of the following s	tatements are true	regarding Group	15?			
	(A)	The tendency to	exhibit -3 oxidat	ion state increases	down the grou	ıp		
	(B)	The tendency to	exihibit –3 oxida	tion state decrease	es down the gro	oup		
	(C)	The stability of	+5 oxidation state	increases down the	ne group			
	(D)	The stability of	+5 oxidation state	decreases down t	he group			
14.	As we	go down the grou	p (Group 15), the	stability of +5 or	kidation state d	ecreases an	d that of +3 state in	ncreases due
	to:							
	(A)	decrease in elect	tronegativity	(B)	increase in a			
	(C)	inert pair effect		(D)	All of the ab	ove		
*15.	Which	of the following s	tatements are true	?				
	(A)	All oxidation sta	ates of nitrogen fro	om +1 to +4 tend	to disproportion	nate in acid	solution.	
	(B)	All intermediate	states of phospho	orus disproportion	ate into +5 and	−3 both in a	alkali and acid.	
	(C)	+3 oxidation sta	te in case of arsen	ic, antimony and	bismuth is extre	emely susce	ptible to disproport	tionation.
	(D)	All of the Group	o 15 elements hav	e vacant d orbital	s in the outerm	ost shell wh	ich can be used to	expand their
		covalencies bey	ond 4.					
*16.	Nitrog	gen differs from the	rest of the memb	ers of group 15 du	ie to:			
	(A)	its small size		(B)	low ionization	on enthalpy		
	(C)	high electronega	ntivity	(D)	Non-availab	ility of d orl	oitals	
*17.	Which	of the following s	tatements are NO	Γ true ?				
	(A)				elf and with o	ther elemen	nts having small si	ze and high
		electronegativity						
	(B)			$p\pi - p\pi$ bond with	themselves.			
	(C)	Nitrogen exists	as a diatomic mol	ecule with a triple	bond between	the two ator	ns	
	(D)			•			Sb = Sb while bis	smuth forms
			n elemental state.		1 1	,		
18.	The ca	ntenation tendency	is weaker in nitro	gen as compared t	o phosphorus.	This is beca	use:	
	(A)						electronic repulsion	n of the non-
			ns owing to the sn	•			-	
	(B)	-	-	_	bond because of	of high inter	electronic repulsion	n of the non-
	- 1		ns owing to the sn			=	-	
	(C)	_	_	_	bond because o	of high inter	electronic repulsion	n of the non-

(D)

the N-N single bond is weaker than P-P single bond because of low interelectronic repulsion of the non-

bonding electrons owing to the small bond length.

bonding electrons owing to large bond length.

19.	All the (A)	e elements of C EH ₂	Group 15 for (B)	m hydrides o EH ₃	f the type : (E = (C)	= N, P, As, Sb c EH4	or Bi) (D)	EH_{6}			
20.	The melting points and boiling points of the hydrides of Group 15 of the type EH ₃ follow the order:										
	(A)	$NH_3 < PH_3$	$3 < AsH_3 < S$	bH ₃	(B)	$NH_3 < PH_3 >$	$AsH_3 > S$	bH ₃			
	(C)	$NH_3 > PH$	$_3$ < AsH $_3$ <	SbH ₃	(D)	$NH_3 > PH_3$	$>$ As $H_3 > 3$	SbH ₃			
21.	The formation of which of the following hydrides (from their constituents in elemental forms) is exothermic in nature?										
	(A)	NH_3	(B)	PH_3	(C)	AsH ₃	(D)	SbH ₃			
22.	The stability of hydrides (EH ₃) of Group 15 elements follows which of the following order:										
	(A)	$NH_3 < PH_3$	$< AsH_3 < S$	bH ₃	(B)	$NH_3 > PH_3$	$> AsH_3 > S$	SbH ₃			
	(C)	$NH_3 < PH_3$	$AsH_3 > S$	SbH ₃	(D)	$NH_3 > PH_3$	$< AsH_3 < 3$	SbH ₃			
23.	The reducing character of the hydrides of group 15 elements follows which of the following order:										
	(A)	$NH_3 < PH_3$	$<$ AsH $_3$ $<$ Sh	$_{0}$ H ₃	(B)	$NH_3 > PH_3 >$	$> AsH_3 > 1$	SbH ₃			
	(C)	$NH_3 < PH$	$_3 > AsH_3 >$	SbH ₃	(D)	$NH_3 > PH_3$	<AsH ₃ $<$ S	SbH ₃			
24.	The basicity of the hydrides of group 15 elements follows the order:										
	(A)	$NH_3 > PH$	$_3$ > AsH $_3$ < $_3$	$SbH_3 < BiH_3$	(B)	$NH_3 > PH_3$	$> AsH_3 > 1$	$SbH_3 > BiH_3$			
	(C)	$NH_3 < PH_3$	< AsH ₃ <s< td=""><td>$bH_3 < BiH_3$</td><td>(D)</td><td>$NH_3 < PH_3$</td><td>$> AsH_3 > S$</td><td>$SbH_3 < BiH_3$</td><td></td></s<>	$bH_3 < BiH_3$	(D)	$NH_3 < PH_3$	$> AsH_3 > S$	$SbH_3 < BiH_3$			
*25.	All the elements of Group 15 form which of the following types of oxides?										
	(A)	E_2O_3	(B)	EO	(C)	E_2O_5	(D)	EO_3			
26.	Which of the following statements are true regarding the oxides of Group 15 elements?										
	I										
	II				reases down th		(D)	54 I II			
	(A)	Only I	(B)	Only II	(C)	Both I and II	(D)	neither I nor II			
27.		kides of arsenio		• •							
	(A)	acidic	(B)	basic	(C)	neutral	(D)	amphoteric			
28.	Nitrogen does not form pentahalides because:										
	(A)										
	(B) (C)										
	(D)										
29.	Which of the following statements regarding the halides of Group 15 elements is true?										
	(A)										
	(B)	All the trihalides except those of nitrogen are stable									
	(C)										
	(D)	None of the	above								
30.	Which is the only nitrogen trihalide known to be stable?										
	(A)	NF ₃	(B)	NBr ₃	(C)	NCl ₃	(D)	NI_3			

31.	PH ₃ ha (A) (B) (C) (D)	P-H bond is longer than N-H bond NH ₃ molecules are associated through hydrogen bonding whereas PH ₃ molecules are not								
*32.	Which (A) (B) (C) (D)	Group 15 elements react with metals to form their binary compounds exhibiting – 3 oxidation state Nitrogen does not form pentahalides nor does it exhibit +5 oxidation state								
*33.	Dinitro (A) (B) (C) (D)	ogen is produced be liquefaction and treating an aque thermal decomp thermal decomp	l fractiona cous solutionsition of	ion of ammonium f ammonium dic	m chloride chromate	with sodium	nitrite			
*34.	Dinitro (A)	ogen : is colourless	(B)	is odourless	(C)	has a mild,	sweet taste	(D)	is non – toxic	
*35.		of the following a	` /				(D)	¹⁶ N		
*36.	Which (A) (B) (C) (D)	It is highly soluble in water It has low freezing and boiling points It is highly reactive at room temperature because of low bond enthalpy of $N \equiv N$ bond. At higher temperatures, it directly combines with some metals to form predominantly covalent nitrides and with non-metals to form predominantly ionic nitrides.								
*37.		monia is formed by the combination of nitrogen and hydrogen during Haber's process. Which of the following tements regarding Haber's process are true? Temperature of approximately 700 K is required. Pressure of 200 atm is required								
*38.	Which (A) (B) (C) (D)	Dinitrogen is used in iron and steel industry as an inert diluent for reactive chemicals. Liquid dinitrogen is used as a refrigerant to preserve biological matters, food items and in cryosurgery.								
39.		rmula of sodium a		No. N		No N	(D)	NT_NT		
*40.	(A) On a sr (A)	Na ₃ N mall scale, ammor caustic soda	(B) nia is obta (B)	Na ₂ N ₃ ined by decomp acetic acid	(C) position of a (C)	Na ₃ N ₂ ammonium sa formaldehy		NaN ₃ nt with lime		

34

*41.	Which of the following statements regarding ammonia are not correct?											
	(A)	It is a colourles gas				It has the smell of rotten eggs						
	(C)	Its shape is teta	rahedral		(D)	Its solubility	very low					
42.	The melting point and boiling point of ammonia is more than what is expected on the basis of its molecular mass. This is due to:											
	(A)											
	(B)	dipole – induced dipole interaction between the molecules										
	(C)		_	een the molecules								
	(D)	ion – dipole interaction between the molecules.										
43.	An aqueous solution of ammonia has a pH value :											
	(A)	2 - 3	(B)	7	(C)	5 – 6	(D)	> 7				
44.	On adding ammonium hydroxide to an aqueous solution of zinc sulphate, a white precipitate, X is obtained. X is :											
	(A)	$(NH_4)_2 SO_4$	(B)	NH ₄ SO ₄	(C)	ZnO	(D)	$Zn(OH)_2$				
45.	Omad	din a ammaniyas 1	مار نید مسامعیا ما	to an aguagua ga	lution of t	Samia ablanida a	haarra aaa	ainitata V is abtained	Via			
45.		=	-	Fe ₂ O ₃ .xH ₂ O			_	cipitate Y is obtained.	Y 1S:			
	(A)	FeO.xH ₂ O	(B)	Fe ₂ O ₃ .xH ₂ O	(C)	Fe(OH) ₃	(D)	Fe(OH) ₂				
46.	Which of the following statements are correct?											
	(A)	The absence of lone pair of electrons on nitrogen atom of NH ₃ makes it a Lewis acid.										
	(B)	Since the octet of nitrogen atom of NH3 is not complete, it acts like a Lewis acid.										
	(C)	The presence of half filled p-orbital on nitrogen atom of NH ₃ makes it a Lewis base.										
	(D)	The presence of lone pair of electrons on the nitrogen atom of NH ₃ makes it a Lewis base.										
	NH ₃ donates the lone pair of electrons on nitrogen atom and forms linkage with metal ions which results in the formation of complex compounds. On adding ammonia to a solution containing cupric ions, a complex is formed. The formula and colour of this complex is:											
	(A)	$\left[\mathrm{Cu}(\mathrm{NH_3})_4\right]^+$, blue		(B)	$[Cu(NH_3)_6]^{\frac{1}{2}}$	²⁺ , blue					
	(C)	$\left[\mathrm{Cu}(\mathrm{NH_3})_4\right]^{2^{-1}}$, blue		(D)	[Cu(NH3)4]	2+, green					
48.	$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$ White ppt											
	AgCl(white p	$(s) + 2NH_3(aq) - opt$	$\longrightarrow X$									
	The formula and colour of X is:											
	(A)	$[Ag(NH_3)_4]C$	l, colour	·less	(B)	$[Ag(NH_3)_2]$	Cl, colour	ess				
	(C)	$[Ag(NH_3)_4]C$	l, white		(D)	$[Ag(NH_3)_2]$	Cl, white					
*49.	Ammonia is used to produce various nitrogenous fertilizers such as:											
	(A)	ammonium nit	rate		(B)	urea						
	(C)	ammonium ph	osphate		(D)	ammonium s	ulphate					

50. Match the following methods of preparation of nitrogen oxides with the nitrogen oxide obtained in each case :

Column-I

Column-II

(method of preparation)

(Nitrogen oxide)

(P) $NH_4NO_3 \xrightarrow{\Delta}$

1 NO

(Q) $Pb(NO_3)_2 \xrightarrow{673}$

2 NO₂

(R) $HNO_3 + P_4O_{10} \longrightarrow$

- $3 N_2O$
- (S) $NaNO_2 + FeSO_4 + H_2SO_4 \longrightarrow$
- $4 N_2O_3$
- $5 N_2O_5$

(B)

Codes:

- **P Q R S** 2 3 4 1
- P Q R S

- (A) 2 3 4 1 (C) 1 3 4 5
- **(D)** 3 2 5

51. NO +N₂O₄ $\xrightarrow{250\text{K}}$ X

The formula of X is:

- (A) N₂O₅
- (B) N_2O_4
- (C) N_2O_3
- (D) NO_2

- *52 Which of the following oxides of nitrogen are neutral?
 - (A) NO
- (B) N_2O_3
- (C) N_2O_5
- (D) N_2O
- 53. Which of the following oxide of nitrogen is an acidic blue solid?
 - (A) N₂O₅
- (B) N_2O_3
- (C) N_2O_4
- (D) N_2O

54. $2NO_2 \stackrel{a}{\rightleftharpoons} N_2O_4$

a and b are respectively.

- (A) heat and cool
- (B) cool and cool

I, II and III

(C) heat and heat

Only III

- (D) cool and heat
- *55. In which of the following oxides of nitrogen, is the oxidation state of nitrogen +4?
 - (A) N_2O_5
- (\mathbf{B}) N_2O_3
- (C) NO_2
- (D) N_2O_4
- **56.** Which of the following oxides of nitrogen have a linear shape?

(B)

- I. N_2O
- II. N_2O_3
- III. NO₂

(C)

- (D) I and III

- **57.** Which of the following nitrogen oxide dimerises?
 - (A) NO

(A)

- (B) N_2O
- (C) NO_2
- **(D)** Both A and C

58. The covalence of nitrogen in N_2O_5 is:

Only I

- (A)
- **(B)** 3
- **(C)** 2
- **(D)** 4

- **59.** The formula of hyponitrous acid is:
 - (A) H₂N₄O₂

5

- **(B)**H₄N₂O₂
- (C) $H_2N_2O_2$
- **(D)** $H_2N_2O_4$

60.	On hea	ating KNO3 or NaN HNO2	NO ₃ and (B)	conc H ₂ SO ₄ , which HNO ₃	h of the (C)	following acids ar $H_2N_2O_2$	e obtained (D)	1 ? H ₂ N ₄
61.	On a la	arge scale, nitric ac	id is prej	pared by :				
	(A)	Contact process			(B)	Haber's Proces	SS	
	(C)	Aluminothermic	process		(D)	Ostwald's Prod	ess	
62.	During	g the Ostwald proc	ess, nitric	oxide is prepared	l by:			
	(A)	direct combinati	ion of nit	rogen and oxygen				
	(B)	catalytic oxidati	on of NE	I ₃ by atmospheric	oxygen			
	(C)	catalytic oxidati	on of alu	minium nitride by	atmosp	heric oxygen		
	(D)	reduction of NO) ₂					
63.	The ac	µueous HNO₃ obtai	ned by C	stwald's process of	can be co	oncentrated to 98%	% by :	
	(A)	distillation			(B)	dehydration wi	th conc H	S_2SO_4
	(C)	A or B			(D)	None of the ab	ove	
64.	Conc l	HNO ₃ is a :						
	(A)	mild reducing ag	gent		(B)	strong reducing	gagent	
	(C)	strong oxidizing	gagent		(D)	strong dehydra	ting agent	
65.	Which	of the following n	itrogen o	vides are evolved	on react	tion of conner with	a dilute ar	nd conc HNO ₃ respectively?
03.	(A)	NO_2 and NO	(B)	N_2O_5 and NO_2	(C)	NO and NO ₂	(D)	N_2O_5 and NO
66.		_	nitrogen	oxides are evolv	ved on 1	reaction of zinc v	vith dilute	e HNO ₃ and with conc HNO ₃
	(A)	tively? N ₂ O and NO	(B)	NO and NO ₂	(C)	N ₂ O and NO ₂	(D)	NO and N ₂ O
	(A)	N ₂ O and NO	(B)	NO allu NO ₂	(C)		(D)	NO and N ₂ O
67.		s such as chromium						
	(A)	react with conc			(B)	react with dil H	_	•
	(C)	do not dissolve	in conc H	INO ₃	(D)	evolve hydroge	en gas on	addition of dil HNO ₃
68.	On add	ding conc HNO3 to	iodine,	carbon, sulphur an	d phosp	horus, the compou	ınds obtai	ned are respectively:
	(A)	HI, CO_2, H_2SO_3	$, H_3PO_3$		(B)	HIO_2 , CO , H_2S	SO ₄ , H ₃ PO	4
	(C)	HIO_3 , CO , H_2SO	O_3 , H_3 PO	4	(D)	HIO_3, CO_2, H_2	SO ₄ , H ₃ PO	O_4
69.	The B	rown Ring test for	nitrates d	lepends on the abi	lity of F	e^{2+} to:		
	(A)	reduce nitrates t	o nitroge	n dioxide	(B)	reduce nitrates	to nitrous	oxide
	(C)	reduce nitrates t	o nitric o	xide	(D)	reduce nitrates	to nitrites	1
70.	The B	rown Ring test is c	arried ou	t by adding a dilu	te soluti	on of X to an aqu	eous solut	ion containing Y ions and ther
		conc H ₂ SO ₄ caref				_		C
	(A)	Fe ₂ (SO ₄) ₃ and n	-	-	(B)	$Fe_2(SO_4)_3$ and	-	
	(C)	FeSO ₄ and nitra			(D)	FeSO ₄ and nitr	ite ion	
71.	The br	own coloured ring	formed a	during the Brown	Ring tes	t for nitrates is due	e to the fo	rmation of:
	(A)	[Fe(H ₂ O) ₅ (NO)]			(B)	[Fe(H ₂ O) ₅ (NO		
	(C)	[Fe(H2O)4(NO)]	•		(D)	[Fe(H ₂ O) ₅ (NO)]	-	
							-	

*72.	Nitric a	cid is used in the manufacture of:				
	(A)	ammonium nitrate	(B)	ammonia		
	(C)	nitroglycerin	(D)	trinitrotoluene		
*73.	Nitric a	cid is used :				
75.	(A)	in the manufacture of nitrates for use in ex	nlosive a	nd pyrotechnics		
	(B)	in the pickling of stainless steel	ipiosive a	na pyroteenines		
	(C)	in etching of metals				
	(D)	as an oxidizer in rocket fuels.				
*74.	-	portant allotropic forms of phosphorus are :				
	(A)	Black (B) White	(C)	Red	(D)	Green
*75.	White r	phosphorus :				
	(A)	is non-poisonous				
	(B)	insoluble in water as well as in CS ₂				
	(C)	shows chemiluminescence				
	(D)	is less stable than other allotropes of phos	ohorus an	d readily catches fi	re when	exposed to air.
76.	White p	phosphorus dissolves in boiling NaOH solut	ion in an	inert atmosphere.		
		$P_4 + NaOH + H_2O \longrightarrow X + Y$				
	X and Y	<i>Y</i> are				
	(A)	PH ₃ and Na ₃ PO ₃	(B)	H ₃ PO ₄ and Na ₃ P	PO_2	
	(C)	PH ₃ and NaH ₂ PO ₂	(D)	PH ₃ and Na ₃ PO ₄	ı	
77	Which	of the following allotrones of phosphorus co	onsist of d	liscrete tetrahedral	P ₄ molec	ules?
77.		of the following allotropes of phosphorus co				
77.	Which (A)	of the following allotropes of phosphorus co White (B) Red	onsist of d	liscrete tetrahedral Black	P ₄ molec (D)	rules? A and B
77. 78.	(A) White p	White (B) Red shosphorus is more reactive than the other a	(C)	Black	(D)	
	(A)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air	(C)	Black	(D)	
	(A) White p (A) (B)	White (B) Red chosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air.	(C)	Black of phosphorus beca	(D)	
	(A) White p (A) (B) (C)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together	(C)	Black of phosphorus beca	(D) ause:	
	(A) White p (A) (B)	White (B) Red chosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air.	(C)	Black of phosphorus beca	(D) ause:	
78.	(A) White p (A) (B) (C) (D)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra	(C)	Black of phosphorus beca	(D) ause:	
	(A) White p (A) (B) (C) (D) Red pho	White (B) Red chosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra by:	(C) Illotropes of the control of th	Black of phosphorus beca meric form. the angles are only	(D) nuse:	
78.	(A) White p (A) (B) (C) (D) Red pho (A)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra between the opphorus in obtained by: cooling white phosphorus at -573K in ar	(C) Illotropes of the control of th	Black of phosphorus beca meric form. the angles are only	(D) nuse:	
78.	(A) White p (A) (B) (C) (D) Red pho (A) (B)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra sphorus in obtained by: cooling white phosphorus at -573K in are exposing white phosphorus to air	(C) Illotropes of the control of th	Black of phosphorus beca meric form. the angles are only	(D) nuse: 7 60°.	
78.	(A) White p (A) (B) (C) (D) Red pho (A)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra between the opphorus in obtained by: cooling white phosphorus at -573K in ar	(C) Illotropes of the intercept of the	Black of phosphorus becameric form. the angles are only cosphere for several	(D) nuse: 7 60°. 1 days. days.	
78. 79.	(A) White p (A) (B) (C) (D) Red pho (A) (B) (C) (D)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete	(C) Illotropes of the intercept of the	Black of phosphorus becameric form. the angles are only cosphere for several	(D) nuse: 7 60°. 1 days. days.	
78.	(A) White p (A) (B) (C) (D) Red pho (A) (B) (C) (D) Red pho	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete	in a polyndra where	Black of phosphorus beca meric form. the angles are only cosphere for several sphere for several of	(D) nuse: 7 60°. 1 days. lays.	
78. 79.	(A) White p (A) (B) (C) (D) Red pho (A) (B) (C) (D) Red pho (A)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra sphorus in obtained by: cooling white phosphorus at -573K in an exposing white phosphorus to air heating black phosphorus at 573 K in an inheating white	in a polyndra where a inert atmosfact atmosfact (B)	Black of phosphorus beca meric form. the angles are only nosphere for several sphere for several of is non poisonous	(D) nuse: 7 60°. 1 days. lays.	
78. 79.	(A) White p (A) (B) (C) (D) Red pho (A) (B) (C) (D) Red pho (A) (C)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete	in a polyndra where a inert atmosfact atmosfact (B)	Black of phosphorus beca meric form. the angles are only nosphere for several sphere for several of is non poisonous	(D) nuse: 7 60°. 1 days. lays.	
78. 79.	(A) White p (A) (B) (C) (D) Red pho (A) (B) (C) (D) Red pho (A)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra sphorus in obtained by: cooling white phosphorus at -573K in an exposing white phosphorus to air heating black phosphorus at 573 K in an inheating white	in a polyndra where a inert atmosfact atmosfact (B)	Black of phosphorus beca meric form. the angles are only nosphere for several sphere for several of is non poisonous	(D) nuse: 7 60°. 1 days. lays.	
78. 79.	(A) White p (A) (B) (C) (D) Red pho (A) (B) (C) (D) Red pho (A) (C) (D)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete	in a polyndra where a inert atmost atmost atmost disulphid	Black of phosphorus beca meric form. the angles are only nosphere for several complete for several complete for several complete for several complete.	(D) nuse: 7 60°. 1 days. lays.	
78. 79. *80.	(A) White p (A) (B) (C) (D) Red pho (A) (B) (C) (D) Red pho (A) (C) (D)	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra linked together of angular strain in the discrete	in a polyndra where a inert atmost atmost atmost disulphid	Black of phosphorus beca meric form. the angles are only nosphere for several complete for several complete for several complete for several complete.	(D) nuse: 7 60°. 1 days. days. days.	
78. 79. *80.	(A) White p (A) (B) (C) (D) Red pho (A) (C) (D) Red pho (A) (C) (D) What is	White (B) Red shosphorus is more reactive than the other a it can be sublimed in air it cannot be oxidized in air. it consists of P ₄ tetrahedra linked together of angular strain in the discrete P ₄ tetrahedra sphorus in obtained by: cooling white phosphorus at -573K in an exposing white phosphorus to air heating black phosphorus at 573 K in an inheating white	in a polyndra where a inert atmost at	Black of phosphorus beca meric form. the angles are only cosphere for several cosphere for se	(D) nuse: 7 60°. 1 days. days. days.	

				Vidyar	nandir C	lasses		
82.	β - bla	ick phosphorus	is obtained	by heating X at 47	73 K unde	er high pressure	X is:	
	(A)	Red phosph	orus		(B)	White phosp	ohorus	
	(C)	α -black ph	osphorus		(D)	Phosphorou	s pentoxide	
*83.	α -bla	ack phosphorus	:					
	(A)	cannot be si	ıblimed		(B)	has opaque	monoclinic o	or rhombohedral crystals
	(C)	is a waxy tr	anslucent so	lid	(D)	does not oxi	dise in air	
*84.	Phosp	hine is prepare	d by reaction	n of calcium phos	phide wit	h		
	(A)	water	(B)	conc. HNO ₃	(C)	dil HCl	(D)	NaOH solution
85.	In lab	oratory phosph	ine is prepar	ed by heating X v	vith conc	NaOH solution	in an inert	atmosphere of CO ₂ . X is:
	(A)	Red phosph	orus		(B)	β-black pho	osphorus	

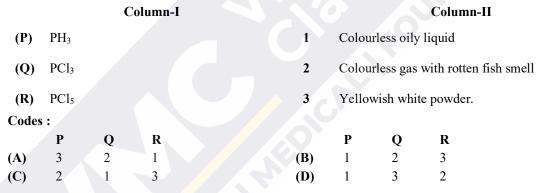
When pure phosphine is non inflammable but becomes inflammable owing to the presence of P₂H₄ or P₄ vapours. To purify it from the impurities phosphine is absorbed in X to form Y which is then treated with Z to give off phosphine X,Y and Z are respectively.:

(D)

(A) KOH, PH_3OH , KI

(C)

(B) HI, PH₄I, KOH


(C) H_2SO_4 , H_3PO_4 , KI

(**D**) CaI_2 , Ca_3P_2 , KOH

White phosphorus

87. Match the following compounds with their properties.

α -black phosphorus

88. X is a highly poisonous compound. It explodes in contact with traces of oxidizing agents such as HNO₃, Cl₂ and Br₂ vapours. It is slightly soluble in water and a solution of X in water decomposes in the presence of light giving its constituents in their elemental forms. X is:

- (A) PCl_3
- **(B)** PH₃
- (C) PCl₅
- **(D)** H_3PO_2

89. $CuSO_4 + PH_3 \longrightarrow Products$. The products are :

- (A) Cu, H_3PO_2, SO_2 (B)
- Cu, H₂SO₄, P₄
- (C) $Cu(PO_4)_2, H_2SO_4$ (D)
- Cu_3P_2 , H_2SO_4

90. When phosphine is adsorbed in HgCl₂ solution, X is obtained. X is:

(A) Pure mercury

(B) mercurous phosphide

(C) mercuric phosphide

(D) mercuric phosphate

91. Phosphine is

- (A) amphoteric
- (B) acidic
- (C) neutral
- (D) basic

92.	Identif	Identify the product(s) in the following reaction: $PH_3 + HBr \longrightarrow$										
	(A)	H ₂ and PBr ₃	(B)	H ₂ and PBr ₅	(C)	PH_4Br	(D)	H ₂ , PBr ₃ , PBr ₅				
93.	Which (A) (C)	n property of phospl Its non-inflamma Its spontaneous	ability	bles its use in Holn	ne's sign (B) (D)	lals? Its toxicity Its basicity						
*94.	Phospl (A)	horus forms which PX ₂	of the fo	ollowing types of ha	alides?	PX ₄	(D)	PX ₅				
*95.	PCl ₃ c (A) (B) (C) (D)	adding HCl to pl	rine ove hosphine um phos	er heated white phose esphide with dil HCl e with white phospl								
96.	PCl ₃ h (A)	ydrolyses in the pro H ₃ PO ₄ and HCl		of moisture to give: H ₃ PO ₂ and HCl		H ₃ PO ₃ and HCl	(D)	H ₄ P ₂ O ₅ and HCl				
97.	In PCl	3, the hybridization sp	of phos (B)	sphorus atom is : sp ²	(C)	sp ³	(D)	dsp^2				
98.		reacts with acetic tion of an acid. Tha Hypophosphoro Orthophosphoro	t acid is us acid		(B) (D)	chloride and ethyl Pyrophosphorou Orthophosphoric	s acid	e respectively along with the				
99.	The sh (A) (C)	nape of PCl ₃ is: tetrahedral trigonal planar			(B) (D)	pyramidal B or C dependin	g on the	temperature				
100.	On hy	drolysis of PCl ₅ , X PCl ₅ + H ₂ O —		ed whi <mark>ch</mark> gets conve -HCl	erted to	Υ.						
		X +H ₂ O—										
	X and (A) (C)	Y are respectively POCl ₃ and H ₃ PC (HPO ₃) ₃ and H ₃ I)3		(B) (D)	(HPO ₃) ₃ and H ₃ I POCl ₃ and H ₃ PO						
101.	In liqu (A) (C)	iid and g <mark>ase</mark> ous stat square pyramida Trigonal bipyrar	.1	hape of PCl ₅ is:	(B) (D)	Pentagonal Octahedral						
*102.	102. Which of the following statements regarding the P-Cl bonds present in PCl ₅ correct? (A) The three equatorial bonds are longer than the two axial bonds (B) The two axial bonds are longer than the three equatorial bonds (C) The axial bond pairs suffer more repulsion than the equatorial bond pairs (D) The equatorial bond pairs suffer more repulsion than the axial bond pairs											

- 103. In the solid state PCl₅ exists as:
 - a covalent solid having discrete trigonal bipyramidal PCl₅ units.
 - an ionic solid, $[PCl_3]^{2+}$ $[PCl_7]^{2-}$ where $[PCl_3]^{2+}$ is trigonal planar and $[PCl_7]^{2-}$ is pentagonal bipyramidal. **(B)**

1

- **(C)** an ionic solid, $[PCl_4]^+$ $[PCl_6]^-$ where $[PCl_4]^+$ is tetrahedral and $[PCl_6]^-$ is octahedral.
- **(D)** an ionic solid [PCl₄]⁺ [PCl₆]⁻ where [PCl₄]⁺ is square planar and [PCl₆]⁻ is octahedral.
- 104. Match the following compounds with their molecular formulae:

Column-I (Name)

Column-II (Formula)

- **(P)** Hypophosphorous acid
- $H_4P_2O_6$

Pyrophosphorous acid **(Q)**

2 $H_4P_2O_5$

(R) Hypophosphoric 3 H_3PO_2

(S) Pyrophosphoric

4 $H_4P_2O_7$

Codes:

(C)

- P (A) 2 1
- R S 3 4
- P **(B)** 3

1

R

- **(D)**
- 2 2

Q

- 105. In which of the following oxo-acids, is the oxidation state of phosphorus +4?
 - Pyrophosphorous acid (A)

Q

1

2

Phyrophosphoric aicd **(B)**

(C) Metaphosphoric acid

- (D) Hypophosphoric acid
- 106. Match the following oxoacids of phosphorus with the methods of their preparation.

4

Column-I (Name)

3

Column-II (Preparation)

- **(P)** Hypophosphorous acid

Orthophosphorous acid

Pyrophosphorous acid

- **(Q)** Hypophosphoric acid
- Orthophosphoric aicd **(S)**

- 1 $PCl_5 + H_3PO_3$
- 2 Red P₄+ alkali
- 3 $P_4O_{10} + H_2O$
- White P₄ + alkali 4
- 5 $P_2O_3 + H_2O$

(T) Codes:

(R)

2 (A) **(C)** 2

P

- Q R 3
- 5 1
- P **(B)** 1 **(D)** 4
- Q 4 2
- R 2 5
- 107. Which of the following oxo-acids tend to disproportionate to higher and lower oxidation states on heating?
 - H_3PO_4 (A)
- **(B)** H_3PO_2

3

- H_3PO_3 **(C)**
- $H_4P_2O_6$ **(D)**

S

3

3

Т

5

1

*108. Which of the following oxo-acids have reducing properties?

5

- (A) H_3PO_4
- **(B)** H_3PO_3
- H_3PO_2
- **(D)** H₄P₂O₇

- 109. The basicity of H₃PO₂, H₃PO₃ and H₃PO₄ are respectively:
 - 3, 2, 1 **(A)**
- 1, 2, 3 **(B)**
- **(C)**
- 2, 1, 3
- **(D)** 3, 3, 3

Group - 16

- 110. The elements known as 'Chalcogens' belong to Group:
 - (A)
- **(B)**

16

- **(C)** 17
- **(D)** 18

111. Match the following:

		Column-I			Column-II
(P)	Gypsum		1	$BaSO_4$	

- **(Q)** Espom salt
- (R) Baryte
- Galena **(S)**

- 2 CaSO₄.2H₂O
- 3 ZnS
- 4 MgSO₄.7H₂O
- 5 PbS

Codes:

*112.

				\mathbf{S}		P	Q	
(A)	4	1	2	3	(B)	4	2.	

(C) 2

- **(D)**
- R \mathbf{S} 1 3
- Which of the following organic materials contain sulphur?
- (A) Eggs
- **(B)** Onion

3

- **(C)** Mustard
- (D) Garlic

113. Match the following:

Column-I (Element)

Column-II (Electronic configuration)

(P) S

[Kr]4d¹⁰5s²5p⁴ 1

(Q) Se 2 $[Ne]3s^23p^4$

(R) Po 3 [Xe]4f¹⁴5d¹⁰6s²6p⁴

(S) Te $[Ar]3d^{10}4s^24p^4$

Codes:

P Q R 2 4 3

2 1 **(C)**

- **(B)** 1 1 2 4 **(D)**
- In Group 16 elements the stability of -2 oxidation state follows the order: 114.
 - (A) O < S < Se < Te < Po

(B) O > S < Se < Te < Po

(C) O > S > Se > Te > Po

- **(D)** O > S > Se > Te < Po
- 115. In which of the following compounds does oxygen show an oxidation state of +2? OF_2
 - H_2O **(A)**
- **(B)**

- **(C)** SO_2
- **(D)** Cl_2O

 \mathbf{S}

- 116. Which of the following statements regarding Group 16 elements are true?
 - S, Se and Te usually show +4 oxidation state in their compounds with oxygen and +6 oxidation state in their (I) compounds with fluorine.
 - (II) The stability of +6 oxidation state increases and that of +4 oxidation state decreases as we go down the group
 - (III) Bonding in +4 and +6 oxidation states is primarily ionic.
 - (A) Only II
- **(B)** I and III
- **(C)** Only I
- **(D)** I, II and III

117.	Consid (A)	er the following The above stat			gen bondii	ng is present in H	2O but no	t in H ₂ S"	
	(A) (B) (C) (D)	The above stat	ement is to	rue and this effect rue and this effect	t is due to	the large size and	d high ele	etronegativity of oxy etronegativity of oxy etronegativity of oxy	gen.
*118.	Which (A)	_	vn the gro		•	* *	_	elements are true? due to increase in b	oond (H-E)
	(B) (C) (D)	All hydrides ex	cept water	the hydrides decreiver possess reducing the Herron H	ng propert	y.			
*119.		of the following The reducing p SO ₂ is oxidizin Both the types	statement property of ng while T of oxides		et regardin es from SO g agent e basic in r	g the oxides of O_2 to TeO_2 .	iroup – 16	elements?	
120.	The sta (A) (B) (C) (D)	Fluorides > Ch Fluorides > Ch	alorides < alorides > alorides <	oup 16 elements to Bromides < Iodic Bromides < Iodic Bromides < Iodic Bromides > Iodic	des des des	e order :			
121.	Which (A)	is the most stabl hexafluoride	e hexahali (B)	de of Group – 16 hexachloride	elements (C)	? hexabromide	(D)	hexaiodide	
122.	Which (A) (B) (C) (D)	They have octa They are gased	ahedral str ous in natu onally stab	ructure		of Group 16 elem	ents true ?		
123.	SF ₄ , Se (A)	eF ₄ , TeF ₄ have w	hich of the (B)	e following type sp ³ d	of hybridiz	zation? dsp ²	(D)	$sp^3d^2 \\$	
124.	The dil (A)	nalides of Group sp ²	16 elemer (B)	nts have which o	f the follow (C)	wing hybridizatio sp ³	n ? (D)	dsp^2	
125.	-	monohalides of g	_	lements such as	S_2F_2 , S_2Cl_2	2, S ₂ Br ₂ , Se ₂ Cl ₂ , S	Se ₂ Br ₂ are	dimeric in nature. Co	onsider the
	The pro	$Se_2Cl_2 \longrightarrow$	Products .						
	(A)	oducts are : SeCl ₂ , Se	(B)	SeCl ₆ , Se	(C)	SeCl ₄ , Se	(D)	Se, Cl ₂	

*126.	By wh	ich of the follo	wing ways c	an O_2 be prepar	red in the la	boratory?					
	(A)	By heating of	oxygen conta	ining salts such	n as chlorate	es, nitrates an	d permangana	tes.			
	(B)	By thermal some metals	_	on of the oxid	es of metal	s low in the	electrochemic	cal series and highe	r oxides of		
	(C) By decomposition of hydrogen peroxide by catalysts such as finely divided metals and manganesc dioxide.										
	(D)	•	•	O ₄ to copper.	<i>y y</i>						
*127.	Which	of the following	ng are stable	isotopes of oxy	ygen?						
	(A)	¹⁵ O	(B)	¹⁶ O	(C)	¹⁷ O	(D)	¹⁸ O			
*128.	Molec	ular oxygen is:									
	(A)	paramagneti	ic		(B)	diamagnet	ic				
	(C)	has odd nun	nber of electr	rons	(D)	has even n	umber of elec	trons			
129.	To init	tiate the combin	nation reaction	on of oxygen w	rith other ele	ements, some	external heati	ng is required. This	is because:		
	(A)	The reaction	is often stro	ongly exotherm	ic						
	(B)	The reaction	ı is always eı	ndothermic							
	(C)	The bond di	ssociation er	thalpy of oxyg	en – oxyger	double bond	l is very low.				
	(D)	The bond di	ssociation er	nthalpy of oxyg	en – oxyger	double bond	l is high.				
130.			ng metals do	es not react wit	h oxygen di	irectly?					
	(A)	Zn	(B)	Pt	(C)	Ca	(D)	Fe			
*131.				e not acidic in n							
	(A)	SO_2	(B)	CaO	(C)	V_2O_5	(D)	BaO			
*132.			_	e amphoteric in			(D)				
	(A)	ZnO	(B)	Al_2O_3	(C)	CaO	(D)	SO_2			
*133.	Which	of the following	ng oxides are	e neutral?							
	(A)	N_2O	(B)	СО	(C)	NO	(D)	NO_2			
134.	Ozone	is made by:									
	(A)	heating SO ₃	in a closed of	container							
	(B)	reaction of S									
	(C)	passing SO ₂	through wat	er							
	(D)	passing a slo	ow dry strear	n of oxygen thr	ough a siler	nt electrical d	ischarge.				
*135.	Which	of the following	ng statement	s regarding ozo	one are NOT	true ?					
	(A)			exothermic pr							
	(B)	Even in sma	ll concentrat	ions, ozone is l	nighly poiso	nous					
	(C)	If the concer	ntration of oz	zone rises above	e about 100	parts per mil	lion, breathing	g becomes uncomfor	rtable		
		resulting in	headache &	nausea.							
	(D)	Ozone is exc	ceptionally s	table thermo dy	namically v	with respect to	o oxygen.				

				Vidya	mandir C	lasses					
136.	The co	The conversion of ozone into oxygen results in:									
	(A)	• •									
	(B) liberation of heat and increase in entropy due to which ΔG has a small negative value.										
	(C)	(C) absorption of heat and decrease in entropy due to which ΔG has a small negative value.									
	(D)	liberation of he	eat and in	crease in entropy	due to wh	ich ∆G has a larg	e negati	ve value.			
137.	O ₃ is a	::									
	(A)	weak reducing	_		(B)	powerful reduci	0 0				
	(C)	weak dehydrat	ing agent		(D)	powerful oxidiz	zing ager	ıt			
138.	PbS +	$O_3 \longrightarrow Pr odu$	cts								
	The pr	oducts are:									
	(A)	$PbO + SO_2$	(B)	$PbSO_4 + O_2$	(C)	$Pb + SO_2 + O_2$	(D)	$PbO + SO_3$			
139.	Which	of the following	is a quan	titative method for	or estimati	ng O ₃ gas ?					
	(A)					ith a borate buffer	and subs	sequent titration	n of the liberated		
		•		ution of potassiu							
	(B)					nt electrical discha					
	(C)	(C) Reaction of O ₃ with excess of KI solution buffered with a borate buffer and subsequent titration of the liberated I ₂ against a standard solution of sodium thiosulphate									
	(D)	•				nosuipnate					
	(D)	Passing ozone	unrough s	solid lead sulphid	e.						
*140.		Which of the following are responsible for the slow depletion of the ozone layer in the upper atmosphere? (A) Emission of nitrogen oxides from the exhaust systems of supersonic jet aeroplanes.									
	(A)		_			ms of supersonic j	et aeropl	anes.			
	(B)			sprays and as ref	_						
	(C)	_			the amour	nt of green house g	ases.				
	(D)	Radiations from	m nuclear	wastes.							
*141.	Which	of the following	statemen	ts regarding <mark>ozo</mark> r	ne are true	?					
	(A)	It is a linear m									
	(B)		_	e, disinfectant and		_					
	(C)		_	oils, ivory, flour,	starch etc.						
	(D)	It is used in the	e manufac	cture of KMnO ₄ .							
*142.	Which	of the following	statemen	ts are correct?							
	(A)	Rhombic sulpl	<mark>ur</mark> is prep	pared by melting	monoclini	c sulphur in a dish	and coo	ling till crust is	formed.		
	(B)	/ / -				oclinic sulphur is c					
	(C)	*				clinic sulphur diss		•			
	(D)	Rhombic sulpl	nur is also	called α-sulphi	ar and mon	noclinic sulphur is	called β	-sulphur.			
143.	Which	of the following	statemen	ts is(are) correct?	?						
	I	_				g is puckered and	has a cro	wn shape.			
	II		_	S ₆ molecules have	_						
	III	α -sulphur is s	table abo	ve 369 K and β -	sulphur is	stable below 369 I	ζ.				
	(A)	Only I	(B)	Only III	(C)	I, II and III	(D)	I and II			

*144.	SO ₂ is	obtained	by:								
	(A)	burnin	g of S in	ı air		(B)	treatin	ng a sulp	hite with	strong base	
	(C)	treatin	g a sulp	hite with	dil H ₂ SO ₄	(D)	roasti	ng of sul	phide ore	S.	
145.	When	SO ₂ is di	ssolved	in water,	a solution of X	is formed. X	Cis:				
	(A)	H_2SO_3	;	(B)	H_2SO_4	(C)	H_2S_2C	O_8	(D)	$H_2S_2O_7$	
146.	NaOH	I + SO ₂ -	— X	+H ₂ O;	$X + H_2O + SO$	$O_2 \longrightarrow Y$					
	X and	Y are res	spectivel	y:							
	(A)	NaHS	O ₃ , Na ₂ S	SO_3		(B)	NaHS	O ₄ , Na ₂	SO ₄		
	(C)	Na ₂ SC	O ₃ , NaHS	SO_3		(D)	Na ₂ S0	O ₄ , NaHS	SO ₄		
147.	SO ₂ re		chlorin	e in the p	resence of char	coal (as cata	lyst) to	give sulp	huryl chl	oride. The form	ula of sulphuryl
	(A)	SOCl ₂		(B)	SO_2Cl_2	(C)	SO ₂ C	13	(D)	SOCl ₃	
148.	SO ₂ is	oxidized	to SO ₃	in the pre	sence of which	of the follow	ving con	npounds	as catalys	t?	
	(A)	MnO_2		(B)	V_2O_5	(C)	SiO ₂		(D)	MgO	
149.	When	moist, So	O ₂ behav	es as :							
	(A)	an oxi	dizing a	gent		(B)	a deh	ydrating	agent		
	(C)	a redu	cing age	nt		(D)	a deh	ydrohalo	genating	agent	
*150.	Which	of the fo	ollowing	reactions	is used as a tes	t for detection	on of SO	2 gas?			
	(A)		_		OH solution	(B)		7	rough dis	stilled water	
	(C)	passin	g SO ₂ th	rough lin	ne water	(D)	passir	ng SO ₂ th	rough aci	idified KMnO ₄	solution
151.	Which	of the fo	ollowing	statemen	ts is(are) correc	t?					
	I	SO ₂ is	a linear	molecule							
	II				oetroleum and s						
	III				g wool and silk						
	(A)	Only I		(B)	I, II, III	(D)	II and	III	(D)	I and III	
152.	Match	the follo	wing:								
			Colu	mn-I (Na	ıme)			Co	olumn-II	Formula)	
	(P)	Sulphu	rous acid	i		1	H_2S_2	O_8			
	(Q)	Sulphu	ric acid			2	H_2S_2O	O_7			
	(R)	Peroxd	is <mark>ulph</mark> ur	ic acid		3	H_2SC)3			
	(S)	Pyrosul	phuric a	cid		4	H_2SC) ₄			
	Codes			ъ	C		ъ	0	ъ	C	
	(4)	P	Q	R	S	(D)	P	Q	R	S	
	(A)	3 1	4 4	2 2	1 3	(B) (D)	4 3	3 4	2 1	1 2	
	(C)					(D)	3	4	1	۷	
153.	•			factured b	y:						
	(A)		's Proce			(B)		urry reac			
	(C)	Etard .	Reaction	1		(D)	Conta	ct Proce	SS		

V /: -I-	yaman	-1:	
	<i> </i>	airt	► [44-I•
		ин С	CERT

	O 1	
154	Oleum	10

- (A) $H_2S_2O_8$
- **(B)** $H_2S_2O_7$
- **(B)** $H_2S_2O_5$
- **(D)** $H_2S_3O_7$

*155. Which of the following statements are correct regarding the following reaction?

$$2SO_2 + O_2 \longrightarrow 2SO_3$$

- V₂O₅ is used as the catalyst (A)
- **(B)** The reaction is irreversible
- The reaction is endothermic **(C)**
- Forward reaction leads to decrease in volume **(D)**

*156. Which of the following characteristics are correct regarding H₂SO₄?

low volatility (A)

(B) strong acidic character

(C) strong affinity for water

ability to act as a reducing agent **(D)**

157. H₂SO₄ ionises in two steps:

$$H_2SO_4(aq) + H_2O(\ell) \longrightarrow H_3O^+(aq) + HSO_4^-(aq)$$

$$HSO_4^-(aq) + H_2O(\ell) \longrightarrow H_3O^+(aq) + SO_4^{2-}(aq)$$

(A)
$$K_{a_1} = K_{a_2}$$

- **(B)** $K_{a_1} >> K_{a_2}$ **(C)** $K_{a_1} << K_{a_2}$
- **(D)** Any of the above depending on the concentration of acid

*158. Which of the following statements are correct?

- Because of its high volatility, H₂SO₄ can be used to manufacture less volatile acids from their corresponding (A)
- Many wet gases can be dried by passing them through conc H₂SO₄, provided the gases do not react with the **(B)** acid.
- **(C)** H₂SO₄ removes water from organic compounds and chars carbohydrates
- **(D)** The order of strength of oxidizing agent is H₂SO₄ < H₃PO₄ < HNO₃

Group - 17

- 159. Which of the following elements is a radioactive halogen?
 - Francium (A)
- **(B)** Radium
- Actinium
- **(D)** Astatine

160. Match the following:

Column-I (Name)

Column-II Formula)

5

Fluorspar **(P)**

 $Ca_3(PO_4)_2.CaF_2$ 1

(Q) Cryolite

Na₃AlF₆ 2

(R) Fluoroapatite 3 CaF₂

Carnalite **(S)**

- Na2AlF5 4
- 5 KCl.MgCl₂.6H₂O

Codes:

- P 0 3 1 5 **(A)**
- R 4 **(B)** 1 3
- **(C)**
- **(D)** 3 2

The correct order of electron gain enthalpy of the halogens is;

	(A)	F > Cl > Br > I	(B)	F < Cl > Br > I	(C)	F < Cl < Br < I	(D)	F > C1 < Br < I
162.	I	=	have th	e smallest atomic ra				
	II III	•		m electron gain entl ain enthalpy of chlo				
	(A)	I and II	(B)	Only II	(C)	II and III	(D)	I, II and III
163.	The m	ost electronegative	elemen	at in the periodic tab	ole is :			
	(A)	Iodine	(B)	Fluorine	(C)	Oxygen	(D)	Francium
*164.	Which	of the following st	atemen	ts are correct?				
	(A)	Halogens have and low effective		-	n gain e	enthalpy in their re	spective	period due to their small size
	(B)		_	s whereas I ₂ is a sol				
	(C)	•	_	enish yellow, Br ₂ , re				1 1 1 14 1 14 1 14
	(D)	outer electrons to		-	on of ra	diations in Visible	region w	which result in the excitation of
*165.	Br ₂ and	d I2 are only sparing	gly solu	ıble in water but are	soluble	in which of the fol	lowing	solvents?
	(A)	CHCl ₃	(B)	CCl ₄	(C)	CS_2	(D)	Hydrocarbons
166.	Which	of the following is	the con	rrect order of the bo	nd disso	ociation enthalpy (X	(X – X) of	the elements of Group-17?
	(A)	F - F < Cl - Cl <			(B)	$F - F \le C \cdot 1 - C1$		
	(C)	F - F > Cl - Cl >	> Br – E	3r > I - I	(D)	F - F > Cl - Cl	\leq Br $-$ B	$r \le I - I$
167.	The bo	ond dissociation ent	thalpy c	of F – F bond is less	than tha	at of Cl – Cl bond b	ecause;	
	(A)	_	_	ity of fluorine atom				
	(B)	_		halpy of fluorine ato				
	(C)			py of fluorine is less	_	=		malagula vihama thava ana mayah
	(D)			n in the case of Cl ₂	iisioii ai	nong the lone pair	S III F2 I	molecule where they are much
*160	Wheel				min o 9			
*168.	(A)	_		ring agent than chlo enthalpy of fluoring				
	(B)			ation of F – F bond	C			
	(C)	high hydration e						
	(D)		-	ain enthalpy of fluor	rine as c	compared to chlorin	e.	
*169.	All hal	logens exhibit –1 o						ibit oxidation states $+1$, $+3$, $+5$
	(A)	Fluorine	(B)	Chlorine	(C)	Bromine	(D)	Iodine
170.	The h		. ,					are realized when they are in
	(A)	Group 14 elemei	nts				(B)	s-block elements
	(C)	•		onegative fluorine a	nd oxyg	en atoms	(D)	Both A and C
VMC	CHFM	ISTRY			48		Clas	s XII Inorganic Chemistry

161.

In their oxides and oxoacids, chlorine and bromine exhibit the oxidation state:

\/\^_ \	CHENAI	CTDV			40		Class	VII I Incurrente Chamietma
182.	Which (A) (C)	of the following refluorine < chlorist	ne < bror		of affinity (B) (D)	of the halogens to fluorine < chlori fluorine > chlori	ne > bron	nine > iodine
181.	Which (A)	of the following is HCl	a liquid (B)	at 10°C? HBr	(C)	HF	(D)	НІ
180.	Which (A)	of the following ha	alogens f (B)	orms only one oxo	oacid? (C)	Bromine	(D)	Iodine
179.	Most of (A) (B) (C) (D)	exothermic due t	to strong to weak b to weak	re: g bond formed by it would formed by it bond formed by it bond formed by it bond formed by it	with other with other	elements. er elements		
*178.	Fluoring (A) (C)	e is anomalous in small size high F – F bond		perties. This is du	e to its : (B) (D)	highest electrone non availability		als in valence shell
*177.	Which (A) (C)	of the following prefection electronegativity ionization enthal		of fluorine have h	igher valu (B) (D)	electron gain ent	halpy	trend set by other halogens?
	(C) (D)	hypohalous acids	5.	whereas Br_2 and gen in acidic medi		with water to fo	orm the c	corresponding hydrohalic and
*176.	(A) (B)	F ₂ and Cl ₂ oxidis	ise water se water t	to O ₂ whereas F ₂ to O ₂ whereas Br ₂ :	reacts wit	h water to form h	ydrobron	nic acid.
175.	What is (A) (C)	the correct order $Cl_2 > F_2 > Br_2 >$ $F_2 > Cl_2 > I_2 > Br$	I_2	idising ability of the	he haloge (B) (D)	ns? $F_2 > Br_2 > Cl_2 >$ $F_2 > Cl_2 > Br_2 > 1$		
174.	Which I	halogen is most sto Chlorine	ongly oxi (B)	dizing and oxidise Fluorine	es other ha	alide ions in solut Bromine	ion and e (D)	ven in the solid phase ? Iodine
*173.	Which (A) (B) (C) (D)	The reactivity of	remely unct with one of the halogonic		vn the gro	oup.	ing nature	e of halogens.
172.	(A) (C)		dissociati	or $+7$ oxidation s on of $F - F$ bond s valence shell	(B) (D)	high hydration e		
173	(A)	+1, -1,	(B)	+3, -1	(C)	+4, +6	(D)	+ 1, +3

171.

183.	Hydro	gen hali	des disso	olve in wa	ter to form hydro	ohalic acids	. The ac	idic stren	gth of thes	se acids varies in the order:	
	(A)	HF >	HCl > H	Br > HI		(B)	HF <	HCl > H	Br > HI		
	(C)	HF <	HCl < H	Br < HI		(D)	HF <	HCl < H	Br > HI		
184.	Match	the follo	owing:								
			(Column-l	[Colum	n-II	
	(P)	Order	of meltin	g point		1	HF >	HCl > H	IBr > HI		
	(Q)	Order	of boiling	g point		2	HCl ·	< HBr < 1	HF < HI		
	(R)	Order	of bond o	dissociati	on enthalpy	3	HCl ·	< HBr < 1	HI < HF		
	(S)	Order	of bond l	ength		4	HF <	HCl < H	IBr < HI		
	Codes						190				
		P	Q	R	S		P	Q	R	S	
	(A)	1	3	4	2	(B)	3	2	4	$\cup 1$	
	(C)	3	1	2	4	(D)	2	3	1	4	
185.	Oxyge	en fluorio	des are st	trong:							
	(A)		ing agen			(B)		inating ag			
	(C)	dehyo	drating ag	gents		(D)	None	of the ab	oove		
186.	How i	s plutoni	um remo	oved from	spent nuclear fu	iel?					
	(A)	It is re	educed b	y O_2F_2 to	PuF ₆ and then re	emoved in the	his form	ı			
	(B)	It is o	xidized l	by O ₂ F ₂ to	PuF ₂ and then 1	removed in	this form	n			
	(C)			7	o PuF ₆ and then r	removed in t	this forn	n.			
	(D)	It can	not be re	emoved.							
187.	What	is the co	rrect ord	er of stab	ility of oxides for	rmed by hal	ogens?				
	(A)	I < C	< Br	(B)	I < Br < C1	(C)	I > C	l > Br	(D)	I > Br > Cl	
188.	Which	n of the f	ollowing	; is used a	s a bleaching age	ent for pape	r pulp a	nd textile	s and in w	rater treatment?	
	(A)	I_2O_5		(B)	ClO ₂	(C)	Cl ₂ O		(D)	$\mathrm{Br}_2\mathrm{O}$	
189.	Which	of the f	allowing	r is used i	n the estimation	of CO?					
10).	(A)	BrO ₃	onowing	(B)	Cl ₂ O ₆	(C)	I_2O_5		(D)	Cl_2O_7	
100								C (1 1			
190.			t with me alent me		rm metal halides	s. The ionic	characte	er of the f	nalides foll	lows the order:	
	(A)			MBr < M	ī	(B)	MF <	· MI < M	Br < MCl		
	(C)			MBr < MI		(D)			ACl < MF		
101											
191.			_		its are correct?	-4:4-4- ·	41 1 1.	J C 41.		. 1.: -1 :	
	I				e than one oxidates in lower oxidates		the ham	des of the	at metai ir	n higher oxidation state will be	
	II				alogen tend to be		than the	lower on	ies		
	(A)	Only	_	(B)	Only II	(C)		I and II	(D)	Neither I nor II	
	(1 1)	Omy	•	(D)	om, n	(0)	Dom	1 4114 11	(2)	Treatment I not 11	

192.	_	of the following	statemen	selves to form a nu ts regarding inter-h	alogens	-	n as inte	r-halogens.
	I			X', XX'_3, XX'_5, XX'_5				
	II	_	_	and X' is smaller		_	(D)	Name of the object
	(A)	Only I	(B)	Only II	(C)	Both I and II	(D)	None of the above
*193.		ne can be prepared	-					
	(A) (B)	heating MnO ₂ v		e. HCl xture of NaCl and I	J.SO.			
	(E)	=		xture of NaCl and I				
	(D)	electrolysis of b						
194.	The De	eacon's Process is	used in	the manufacture of				
., .,	(A)	Chlorine	asea m		(B)	hydrogen chlori	de	
	(C)	Hypochlorous a	acid		(D)	Inter-halogen co		ds
195.	In the	Deacon's Proces	s. HCl s	pas is oxidized by	atmosp	heric oxygen in th	ne prese	ence of which of the following
1,0,		unds as catalyst?	_	sus is enfuzed by	umosp	nerie engen in a	ic prese	nee or which or the renewing
	(A)	FeCl ₃	(B)	MnO_2	(C)	CuCl ₂	(D)	Ni
*196.	Which	of the following	statemen	ts regarding chlorin	e are co	orrect?		
	(A)	It is a greenish			(B)	It has a fruity oc	lour	
	(C)	It is soluble in	water		(D)	It has great affir	nity for l	nydrogen
197.	$S_0 + C$	$Cl_2 \longrightarrow X$						
->.•	X is:	, , , , ,						
	(A)	SCl ₂	(B)	S ₂ Cl ₃	(C)	SCl ₄	(D)	S_2Cl_2
198.	NH ₂	$+Cl_2 \longrightarrow Proc$	ducts					
	(excess)	_						
	_	oducts are:						
	(A)	NCl ₃ and HCl	(B)	NH ₄ Cl and HCl	(C)	NH ₄ Cl and N ₂	(D)	N ₂ and HCl
199.	NH ₃ +	$-Cl_2 \longrightarrow Pro$ (excess)	ducts					
	The pr	oducts are:						
	(A)	NCl ₃ and HCl	(B)	NH ₄ Cl and HCl	(C)	NH ₄ Cl and N ₂	(D)	N ₂ and HCl
200.	Consid	ler the following r	reactions	:				
		NaOH + (cold and dilute)	Cl ₂ —	\rightarrow X + NaCl + H ₂ C)			
			Cl.	V + NoCl + U O				
		(hot and conc.)	C1 ₂ ——	\rightarrow Y + NaCl + H ₂ O				
	X and	Y are respectively	<i>7</i> :					

(A)

(C)

NaOCl and NaClO₄

NaClO₃ and NaClO₄

(B)

(D)

 $NaClO_3$ and NaOCl

NaOCl and NaClO₃

- **201.** Chlorine reacts with dry slaked lime to give :
 - (A) washing powder

(B) baking powder

(C) bleaching powder

- (D) Plaster of Paris
- *202. Which of the following statements are correct?
 - (A) Chlorine reacts with saturated hydrocarbons to give addition products
 - (B) Chlorine reacts with unsaturated hydrocarbons to give substitution products
 - (C) Chlorine water on standing loses its yellow colour due to the formation of HCl and HOCl
 - **(D)** Hypochlorous acid (HOCl) gives nascent oxygen which is responsible for oxidizing and bleaching properties of chlorine.
- *203. Which of the following statements are correct?
 - (A) Chlorine oxidizes Fe^{2+} to Fe^{3+} , SO_3^{2-} to SO_4^{2-} , SO_2 to SO_4^{2-} , I_2 to IO_3^{-}
 - **(B)** The bleaching action of chlorine is temporary
 - (C) Chlorine is used in the extraction of gold and platinum
 - (D) Chlorine is used in the manufacture of DDT and refrigerants.
- 204. Chlorine is used in the manufacture of the following poisonous gases. Match the names with the formulae:

Column-II Column-II

(P) Phosgene

1 Cl CH₂ CH₂S CH₂CH₂Cl

(Q) Mustard gas

2 COCl₂

(R) Tear gas

- 3 CCl₃NO₂
- 4 CCl₃NO₃

Codes:

P Q R
(A) 4 2 1
(C) 2 1 4

- P Q R (B) 3 2 1
- (D) 2 1 3
- 205. What is obtained on heating NaCl with Conc H₂SO₄?
 - (A) NaOH, H_2 , SO_2 , Cl_2

(B) Na_2SO_4 , HCl

(C) Na_2SO_4 , SO_2 , Cl_2

- (**D**) NaH, SO_2 , Cl_2
- 206. Aqua regia is used for dissolving noble metals such as gold and platinum. Aqua regia is a mixture of:
 - (A) conc HCl and conc HNO₃ in the ratio 1: 3 respectively
 - **(B)** conc HCl and dil HNO₃ in the ratio 1 : 3 respectively.
 - (C) conc HCl and conc HNO₃ in the ratio 3: 1 respectively.
 - (**D**) conc HCl and dil HNO₃ in the ratio 3 : 1 respectively.
- *207. Which of the following statements are correct?
 - (A) HCl decomposes salts of strong acids
 - **(B)** HCl decomposes salts of weak acids
 - (C) HCl reacts with finely powdered iron to form FeCl₃.
 - **(D)** HCl reacts with finely powdered iron to form FeCl₂
- **208.** Fluorine forms only one oxo-acid. Its formula is :
 - (A) HOFO
- **(B)** $HOFO_2$
- (C) HOF
- **(D)** $HOFO_3$

209. Match the following:

		•	Jolumn-	l				Colur	nn-11	
(P)	Нуро	chlorous a	acid		1	HOC	ClO ₃			
(Q)	Chlor	ous acid			2	HOC	C1			
(R)	Chlor	ic acid			3	HOC	C1O ₂			
(S)	Perch	loric acid			4	HOCIO				
Code	s:									
	P	Q	R	S		P	Q	R	S	
(A)	4	2	3	1	(B)	4	2	1	3	
(C)	2	4	1	3	(D)	2	4	3	1	

- *210. When two different halogens react with each other, interhalogen compounds are formed. Which of the following statements regarding them are correct?
 - (A) They can be assigned general compositions as XX', XX'_3 , $XX'_5XX'_7$
 - (B) X is halogen of smaller size and X' of larger size
 - (C) X is more electropositive than X'
 - (D) As the ratio between radii of X and X' decreases, the number of atoms per molecule increases.
- **211.** The shapes of IF_5 and IF_3 are respectively :
 - (A) square pyramidal and tetrahedral
- **(B)** square pyramidal and lrnt T shaped
- (C) trigonal bipyramidal and tetrahedral
- (D) trigonal bipyramidal and lrnt T-shaped
- *212. Which of the following statements regarding inter-halogen compounds are correct?
 - (A) All of them except IF_7 are covalent.
 - (B) All of them are diamagnetic in nature
 - (C) All are volatile solids or liquids at room temperature except ClF which is a gas.
 - (D) They can be prepared by direct combination or by the action of halogen on lower inter-halogen compounds.
- **213.** Consider the following statements:
 - I Inter-halogen compounds are less reactive than halogens (except fluorine)
 - II X X' bond in inter-halogens is stronger than X X bond in halogens except F F bond.
 - (A) Both are correct and II is the correct explanation for I
- **(B)** Only I is correct

(C) Only II is correct

- **(D)** Both are incorrect
- 214. The inter halogen compounds undergo hydrolysis to give halide ion derived from the smaller halogen and an anion derived from the large halogen. Match these anions with the inter halogen compound from which they are derived.

			Column-l	I				Colur	nn-II	
(P)	Hypoh	alite			1	XX'5	;			
(Q)	Halite				2	XX'_{7}	,			
(R)	Halate				3	XX'				
(S)	Perhala	ate			4	XX_3'	}			
Codes	:									
	P	Q	R	\mathbf{S}		P	Q	R	\mathbf{S}	
(A)	1	2	3	4	(B)	3	4	1	2	
(C)	4	3	1	2	(D)	2	1	4	3	

Which of the following statements regarding interhalogen compounds is(are) correct?

	(A)	They are used a	-						
	(B)			orinating agents			0.325= =		
	(C)			or the production	n of UF ₆ in	the enrichment of	of ³²³ U		
	(D)	All of the above	e.						
Group	- 18								
216.	Which	of the following	noble gas	es does not occu	r in the atn	nosphere?			
	(A)	Krypton	(B)	Xenon	(C)	Radon	(D)	Neon	
217.	The at constit	•	ance of	noble gases in o	dry air is	~1%. Which of	the follo	wing noble gases is the	ne major
	(A)	Helium	(B)	Krypton	(C)	Xenon	(D)	Argon	
218.	Which	is the main comn	nercial so	ource of helium?					
	(A)	Ocean water	(B)	Atmosphere	(C)	Natural Gas	(D)	Volcanic lava	
*219.	Which	of the following	are the ra	rest elements of	Group – 18	3?			
	(A)	Helium	(B)	Krypton	(C)	Radon	(D)	Xenon	
*221.	(A) (B) (C) (D)	They have gene	cally unr Kr are ga eral electi high ion	eactive ses whereas Xe a conic configuration ization enthalpy	and Rn are on ns ² np ⁶ e and it incr				
			` `		(C)	Krypton	(D)	Action	
222.		ectronic configura		Tenon is:		14 10	2 6		
	(A)	$[Ar]3d^{10}4s^24p$			(B)	[Kr]4f ¹⁴ 5d ¹⁰	_		
	(C)	$[Kr]4d^{10}5s^25p$	6		(D)	$[Ar]4d^{10}5s^25$	p^6		
*223.	Which (A) (B) (C) (D)	They are sparin They have low	e <mark>posi</mark> tive gly solub melting b	e values of electro ble in water out high boiling p	on gain ento		dispersion	force	
224.	Which (A)	of the following of Helium	elements (B)	has the lowest bo Krypton	oiling poin (C)	t of any known s Neon	ubstance (D)	? Radon	
225.	Which	of the following	noble g	gas has an unusu	al proper	ty of diffusing t	hrough m	ost commonly used la	boratory
		al such as rubber,	_				5	,	J
	(A)	Helium	(B)	Krypton	(C)	Neon	(D)	Radon	
					(C)	Neon	(D)	Radon	

215.

- *226 The inertness of the noble gases to chemical reactivity is attributed to which of the following reasons?
 - The noble gases except helium (1s²) have completely filled ns²np⁶ electronic configuration in their valence shell.
 - **(B)** They have low ionization enthalpy and high negative electron gain enthalpy.
 - **(C)** They have high ionization enthalpy and highly positive electron gain enthalpy.
 - **(D)** They have very small size
- *227. Which of the following fluorides are formed by xenon?
 - (A) XeF
- **(B)** XeF₂
- **(C)** XeF₄
- (D) XeF₆

228. Match the following

Column-I

Column-II

(P)
$$Xe(g) + F_2(g) \xrightarrow{673,1bar}$$

1 XeF₄(s)

(Q)
$$Xe(g) + F_2(g) \xrightarrow{873K,7bar}$$

(1:5 ratio)

2 $XeF_6(s)$

(R)
$$Xe(g) + F_2(g) \xrightarrow{573K, 60 - 70 \text{ bar}}$$

(1:20 ratio)

Codes:

R 3 1

1

- **(B) (D)**
- 229. The structures of XeF₂, XeF₄ and XeF₆ are respectively:
 - bent, square planar and distorted octahedral (A)
 - **(B)** bent, tetrahedral and pentagonal pyramidal
 - **(C)** linear, square planar and distorted octahedral
 - **(D)** linear, tetrahedral and distorted octahedral
- 230. Complete hydrolysis of XeF₄ and XeF₆ with water gives :
 - XeOF₄ (A)
- **(B)** XeO₄
- **(C)** XeO_3
- **(D)** XeO_2F_2

3

- 231 Which of the following statements are NOT true?
 - XeF₂, XeF₄ and XeF₆ are powerful fluorinating agents. (A)
 - **(B)** XeF₂, XeF₄ and XeF₆ are readily hydrolysed by even traces of water.
 - **(C)** Xenon fluorides react with fluoride ion acceptors to form cationic species and fluoride ion donors to form fluoroanions.
 - **(D)** None of the above
- 232. The structures of XeO₃ and XeOF₄ are respectively.
 - (A) trigonal planar and trigonal bipyramidal
- **(B)** tetrahedral and trigonal bipyramidal
- **(C)** tetrahedral and square pyramidal
- **(D)** pyramidal and square pyramidal

V /: -I	yamandir [,]	<u> </u>
AVAI 6 N		1138626
	yannanan	CIGSSCS

*233.	Helium (A) (C)	n is a non-inflan in filling ball as a cryogeni		ooled nuclear reactors nt for oxygen in diving apparatus							
234.	Which (A)	of the followin Helium	g gases is u (B)	sed to provide an Xenon	inert atm (C)	osphere in l Argon	nigher to	emperati (D)	ure metallurgical process ? Krypton		
*235.	Partial (A)	hydrolysis of X XeOF ₂	(D)	XeO ₂ F ₄							
				d & f -	Block Ele	ements		Ò] 000		
1.	 Which of the following statement is true? (A) Transition metal and many of their compounds show paramagnetic behaviour. (B) The enthalpy of atomisation of the transition metal are high. (C) Transition metal and their compounds act as good catalyst. (D) All the above 										
2.	Genera (A)	ns ² np ² nd ¹⁻¹⁰		of d-block elemen $(n-1)d^{0-10}$ ns		$(n-1)d^1$	-10 _{ns} ²	(D)	$nd^{1-10}ns^2$		
3.	I. II. III. IV.	Greater the n Metals with h Metal of first series.	t of Mn is number of valigh enthalp	naximum in 3d sealence electron, so by of atomisation	tronger is tends to b	the resulting oe noble in t	g bondi heir rea tion tha	ng. ction.	f unpaired electron. of third and second transition All of the above		
4.		CrO ₃ is mor Both CrO ₃ a	e stable tha		(B) (D)	WO_3 is Both are			n CrO ₃		
5.	Bondin	ng in $Fe(CO)_5$ σ character	has : (B)	π character	(C)	Both (A)	& (B)	(D)	None of these		
6.	The co (A) (B) (C) (D)	Scandium exi Lower oxidat	hibits varial ion state is on element	ition element is: ble oxidation state favoured by heav s like Ni, Fe, Cr	iar memb			ate in sa	me of their compound		

7.	E°(M	$(2^{2+}/M)$ of copper	r is positi	ve. It is because of	f:			
	(A)	High hydration	n energy				(B)	Low hydration energy
	(C)			tion of Cu is less s	stable		(D)	None of these
8.	Ti ²⁺	and CrO_4^{2-} are re	espectivel	y:				
	(A) (C)	Reducing ager Both are oxidi			(B) (D)	Oxidizing agent Both are reducing		
9.	Abilit	y of fluorine to sta	abilise hig	ghest oxidation sta	te is due	to:		
	(A) (C)	High lattice en High electrone	ergy		(B) (D)	High bond enthat All of the above		
10.	Which	n of the following	is correct	t order of oxidising	7 -			
	(A)	$VO_2^+ < Cr_2O_7^2$	e < MnO	-	(B)	$VO_{2}^{+} < MnO_{4}^{-} < MnO_{4}^{-} < VO_{2}^{+} < MnO_{4}^{-} < VO_{2}^{+} < MnO_{4}^{-} < VO_{2}^{+} < MnO_{4}^{-} < MnO_$	$< Cr_2O_7^2$	
	(C)	$MnO_4^- < Cr_2O_4$	$O_7^{2-} < VO$	9 ⁺ ₂	(D)	$MnO_4^- < VO_2^+ <$	$< \operatorname{Cr}_2 \operatorname{O}_7^2$	-
11.		gen on reaction w	ith dilute		rogen on (B)	basis of electrode p Hydration energ		But most of them do not give
	(C)	Electronegitivi	ity is low		(D)	None of these	,,,	
12.		$_{+/Mn^{2+}} = x ; E$						
	(A)	x > y	(B)	x < y	(C)	x = y	(D)	Can't be predicted
13.	M^{2+}	$+H^+ \longrightarrow M^{3+}$	+ H ₂ . Me	etal (M) can be:				
	(A)	Cr	(B)	Mn	(C)	Co	(D)	Insufficient data
14.	Magn	etic moment of tra	ansition n	netal ion is $\sqrt{15}$. T	Therefore	number of unpaire	d electro	on present in it is :
	(A)	0	(B)	1	(C)	2	(D)	3
15.	Consi	der following stat	ement.					
	I.			xtreme form of par	_			
	II.			treme form of ferr	_			
	III. IV.	•		_	_	to paramagnetism. mum for first transi	tion seri	es
		et statements are :		ingulai momentun	II IS IIIAAI	mum for mist transi	tion sen	.03.
	(A)	I, III & IV	(B)	II, III & IV	(C)	II and III	(D)	I and III
*16.	Transi	tion metal show of	colour be	cause :				
	(A)	They are parar	nagnetic		(B)	Charge transfer		
	(C)	d-d transition			(D)	They emit light		

15	3371 ' 1	64 64	. 1			1 ' ' 1	2.1 1	,· ,·
17.		one of the follow: Paramagnetic b	_	cteristics of trans	ition meta (B)	als is associated w Variable oxida	-	tic properties.
	(A) (C)	High enthalpy of		ation	(D)	Low hydration		
	(C)	riigii chthaipy c	n awiiis	ation	(D)	Low Hydration	L	
18.	Which	of the following i	s true for	interstial compo	unds?			
	(A)	Interstial compo	ounds hav	ve high melting po	oint, High	ner than those of p	oure metal	
	(B)	They are very s						
	(C)	They are very re						
	(D)	All above are co						
19.	In the d	lichromate ion (C	$(r_2O_7)^{2-}$,				
	(A)	4 Cr-O bonds as	re equiva	lent	(B)	6 Cr-O bonds	are equiva	lent
	(C)	All Cr-O bonds	are equiv	valent	(D)	4 Cr-O bonds	are not eq	uivalent
20.	Which	of the following of	oxide of c	chromium is Amp	hoteric in	nature?		
	(A)	CrO ₃	(B)	CrO	(C)	Cr_2O_3	(D)	Cr
	()	3	()			2 3		
21.	$Cr_2O_7^2$	$-\frac{X}{Y}$ 2CrO ₄ ²⁻	, X and	Y are respectively	/ :			
	(A)	H ⁺ and OH ⁻	(B)	OH ⁻ and H ⁺	(C)	OH ⁻ and H ₂ O	(D)	H ₂ O and OH ⁻
22.	MnO_4^-	and MnO_4^{2-} are	respectiv	rely:				
	(A)	Green and purp	le		(B)	Purple and gre	en	
	(C)	Brown and purp	ole		(D)	Purple and bro	wn	
23.								
	MnO-	xe ⁻ Alkaline med		MnO^{2-}				
	MnO_4^-	Alkaline med	ium	1VIII 0 4				
	+ ye	Alkaline med (Acidic mediu	ım)	Mn ²⁺				
	+ ze ⁻	(Neutral med	ium)	MacO				
				MinO ₂				
	-	d z are respectivel		1.50	(6)	1 2 5	(D)	5.0.1
	(A)	1, 2, 3	(B)	1, 5, 3	(C)	1, 3, 5	(D)	5, 3, 1
24.	The pro	oduct of oxidation	of I ⁻ wi	th MnO_4^- in alka	lline and a	acidic medium is	respective	ely:
	(A)	I_2 and IO_3^-	(B)	IO_3^- and I_2	(C)	Both I ₂	(D)	Both IO_3^-
25.	Perman	ganate titration in	n presence	e of HCl are unsa	tisfactory	because:		
	(A)	It will form con	nplex		(B)	HCl is reduced	l	
	(C)	HCl is oxidized	to chlori	ne	(D)	All above are t	rue	
26.	When 1	MnO ₂ is fused w	ith KOH,	, a coloured comp	ound is f	ormed, the produc	et and its	colour is :
	(A)	K_2MnO_4 , gree	en		(B)	KMnO ₄ , purp	ole	
	(C)	K_2MnO_4 , pur			(D)	KMnO ₄ , gree		
		•				•		

				viay	amanan C	1035C3			
27.	Which	n of the followin	g statemen	t is not true abou	ut potassiun	n permanganat	e :		
	(A)	It is green in	colour		(B)	It is Iso-stru	ectural to KC	ClO ₄	
	(C)	It decompose	s on heatin	g	(D)	It is good or	xidising ager	ıt	
28.	FeCr	$_{2}O_{4} + Na_{2}CO_{3} -$	$+O_2 \longrightarrow$	$X + \text{Fe}_2\text{O}_3 + \text{C}$	O_2				
	X + H	$I^+ \longrightarrow Y + Na$	$h^+ + H_2O$						
	Y+2	$KCl \longrightarrow K_2C$	$r_2O_7 + 2N$	aCl					
	Colou	rs of X and Y ar	e respectiv	ely:					
	(A)	Yellow and o	range		(B)	Orange and	yellow		
	(C)	Both yellow			(D)	Both orange			
29.	Corre	ct statement is:							
	(A)	Cu ²⁺ is mor	e stable tha	ın Cu ⁺ in aque	ous solution	ıs			
	(B)	Cu ²⁺ is less	stable than	Cu ⁺ in aqueor	us solutions				
	(C)	Both Cu ⁺ ar	nd Cu ²⁺ ar	e equally stable	in aqueous	stable			
	(D)	Both are unst		1 7					
30.	Which	n of the followin	g is well kı	nown to exhibit	+4 oxidati	on state.			
	(A)	Eu	(B)	Ce	(C)	Yb	(D)	La	
	(A)	Lu	(B)	CC	(c)	10	(D)	La	
31.	The o	uter electronic c	onfiguratio	n of cerium (Ce), atomic nu	ımber is:			
	(A)	$5d^26s^2$	(B)	$4f^15d^16s^2$	(C)	$4f^26s^2$	(D)	$4f^3$	
32.	In con	ntext of Lanthani	des, which	of the following	g statement	is correct?			
	(A)	There is a gra	dual incre	ase in the atomic	c radii of the	e members wit	h increasing	atomic nu	ımber
	(B)		_	erties, the separa		thanide is not	easy.		
	(C)			es a <mark>nd h</mark> ydroxide	es				
	(D)	They are hard	d metals						
33.	Lanth	anide contraction	n is due to						
	(A)			tron by another					
	(B)	_		ne electron by a	nother in sa	me sub shell.			
	(C)	Poor shieldin	-						
	(D)	Because of st	rong inter-	atomic interaction	on				
34.	Most	stable oxidation	stable of la	nthanide is:					
	(A)	+2	(B)	+3	(C)	+4	(D)	+6	
35.	F11 ²⁺	and Ce ⁴⁺ are r	espectively	good :					
JJ.	Ľи	and CE ale I	cspecuvery	good.					

(A)

(C)

Reducing agent and oxidizing agent

Both reducing agent

Oxidizing agent and Reducing agent

Both oxidizing agent

(B)

(D)

- **36.** Correct order of increasing ionic Radii is:
 - (A) $La^{3+} < Ce^{3+} < Eu^{3+} < Gd^{3+} < Lu^{3+}$
- **(B)** $Lu^{3+} < Gd^{3+} < Eu^{3+} < Ce^{3+} < La^{3+}$
- (C) $Lu^{3+} < Eu^{3+} < Ce^{3+} < Gd^{3+} < La^{3+}$
- (D) $Lu^{3+} < Eu^{3+} < Gd^{3+} < Ce^{3+} < La^{3+}$
- **37.** Which of the following statement is not true :
 - I. Lu³⁺ is paramagnetic

- II. Absorption bonds shown by Lanthanoid are broad
- III. All Ln³⁺ ions show colour

Incorrect statements are:

- (A) I, II and III
- (B) I and II
- (C) II and III
- (D) Only II

- **38.** Which of the following statement is true about Actinoids.
 - (A) It shows variable oxidation state
 - **(B)** Ionic radii of M³⁺ ions decreases irregularly across series.
 - (C) Actinoid contraction is lesser from element to element than Lanthanoid contraction
 - **(D)** All of the above
- 39. Ionization enthalpy of Actinoids are generally lower than that of Lanthanoids. It is because of:
 - (A) Less peneration of 5f orbital
- (B) High shielding effect of 5f orbital
- (C) High penetration of 5f orbital
- **(D)** Both (B) and (C)
- **40.** Which of the following is used in Ziegler-Natta Catalysis:
 - (A) T
- **(B)** Zn
- (C) F
- **(D)** Sn

- **41.** In the wacker's process, Catalyst used is:
 - (A) PdCl₂
- (B) $ZnCl_2$
- (C) TiCl₄
- (D) V_2O_5
- 42. Larger number of oxidation states are exhibited by Actinoides than by Lanthanoides, the main reason being.
 - (A) 4f orbital is more diffused than 5f orbital
 - **(B)** More energy difference between 5f and 6d orbital
 - (C) Less energy difference between 5f and 6d orbital
 - (D) Actinoid are smaller in size

Co-Ordination Compounds

1.	For th	e complex [Co	Cl(NH ₃) ₅] ²⁺ ,	secondary vale	ency of Co is	s:			
	(A)	6	(B)	2	(C)	3	(D)	1	
2.		der the followir		es:					
	1. 3.			Ionisable ave directional	2. properties	Primary va	lencies are sa	itisfied by negative ions	
	(A)	se statements 1, 2, 3 are co	orrect		(B)	2 and 3 are	correct		
	(A) (C)	1 and 3 are of			(D)	1 and 2 are			
3.			_	most likely str xcess silver Nit				l chlorine of the compo	ound is
	(A)	$[Co(NH_3)_6]O$			(B)		Cl]Cl ₂ (NH ₃)		
	(C)	$[Co(NH_3)_4C$	l ₂]Cl(NH ₃) ₂		(D)	[Co(NH ₃) ₃	Cl ₃](NH ₃) ₃		
4.	The n	umber of donor	sites in C ₂	O ₄ ²⁻ , [EDTA]	4- and Cl	are respective	ely		
	(A)	4, 4, 1	(B)	2, 6, 1	(C)	2, 6, 3	(D)	4, 6, 1	
5.	Which	n of following i	s Ambidenta	ate ligand?					
	1.	NO_2^-	2.	$C_2O_4^{2-}$	3.	SCN ⁻			
	(A)	1 and 3	(B)	2 and 3	(C)	Only 3	(D)	All	
6.	Co-ore	dination Numb	er of comple	ex [Fe(C ₂ O ₄) ₃] ³⁻ is:				
	(A)	3	(B)	6	(C)	4	(D)	-3	
7.				true <mark>for</mark> co-ordi					
	(A)			a bond formed			m.		
	(B)			ond formed by l	_		ht	_	
	(C) (D)			sigma and pi b t depend on sig			n central atom	1	
	(D)	Co-ordinatio	ni no. do no	t depend on sig	ina ana pi oc	ли			
8.	Oxida	tion Number of	f metal in co	mplex [Cu(CN	$[1)_4]^{3-}$ is:				
	(A)	3	(B)	1	(C)	4	(D)	-3	
9.	For a	give metal M ³⁺	co-ordina		six, then for	which set of l	igand, compl	ex will be more stable.	
	(A)	6H ₂ O	(B)	EDTA ^{4–}	(C)	6F ⁻	(D)	$2NH_3$ and $2C_2O_4^{2-}$	
10.	IUPA	C naming of [A	Ag(NH ₃) ₂]	$[Ag(CN)_2]$ is:					
	(A) (C)		` ′ ′	yano silver (ii) yano argentite	(B) (D)		silver (i) dicy silver (i) dicy	anoargentate (i) ano silver (i)	

1.

11.	IUPA	C naming of Hg[C	o(SCN)	4]				
	(A) (C)	Mercury tetrath	•	` '	(B) (D)	Mercury tetrath Mercury tetrath	•	` '
12.	Corre	ct structure of dichl	oridobis	s (ethane - 1, 2 - c	diamine) co	obalt (iii) is :		
	(A)	$[CoCl_2(en)_2]$	(B)	[CoCl ₂ en]	(C)	$[CoCl_2(en)_2]^+$	(D)	$[CoCl_2(en)_2]^-$
13.	Which	n of the following c	an show	face-mer isomer	rism?			
	(A)	$[Co(NH_3)_3(NC)]$			(B)	$[Co(en)_3]$		
	(C)	$[CoCl_2(en)_2]$			(D)	$[CoCl_2(NH_3)_4$]	
14.	For th	e complex ion dich	loro bis	(ethylene diamin	ne) cobalt (III), select the corr	ect state	ment.
	(A)	It has three ison	ners, two	of them are opti	cally activ	e and one is optica	lly inact	ive
	(B)			of them are optic	-			
	(C)			of them are optic		ve		
	(D)	It has only two	isomers,	both are opticall	y inactive.			
15.	Which	n of following is lik	ely to sl	now optical Activ	vity:			
	(A)	$\left[\operatorname{Co(en)}_{3}\right]^{3+}$			(B)	trans [Co(en) ₂ C	Cl ₂]	
	(C)	cis [Fe(NH ₃) ₂	Cl ₄]		(D)	None of these		
16.	Identi	fy type of isomeris	m exhib	ited by complex	[Co(NH ₃)	₅ NO ₂](NO ₃) ₂		
	(A)	Geometrical	(B)	Linkage	(C)	Ionisation	(D)	All of these
17.	Which (A) (B)		merism	is shown by hom		nplexes only. metrical isomers.		
	(C)		_	t cis-trans isomer		incurear isomers.		
	(D)	All of these						
18.	Whiel	n of the following is	s outer-c	o <mark>rbi</mark> tal complex ?				
	(A)	$\left[\text{Co(NH}_3)_6\right]^{3+}$		_		$\left[\mathrm{Co(H_2O)_6}\right]^{3+}$	(D)	$[\text{Co}(\text{C}_2\text{O}_4)_3]^{-3}$
19.	Numb	er of unpaired elec	tron and	magnetic behavi	iour of [Ni	i(CO) ₄] is:		
	(A)	0 and diamagne			(B)	2 and diamagne		
	(C)	0 and paramagn	etic		(D)	2 and paramagn	etic	
20.	Amon	ng [NiCl ₄] ²⁻ ,[Ni(C	$(2N)_4]^{2-}$	and[Ni(CO) ₄]				
	(A)	[Ni(CO) ₄] and	[NiCl ₄]	^{2–} are paramagne	etic while	$[Ni(CN)_4]^{2-}$ is di	amagnet	ic
	(B)	$[NiCl_4]^{2-}$ is pa	ramagn	etic while [Ni(C]	$(N)_4]^{2-}$ and	d [Ni(CO) ₄ are di	amagnet	ic
	(C)	[Ni(CO) ₄ is dia	ımagnet	ic while [NiCl ₄]	^{2–} and [N	$i(CN)_4]^{2-}$ are par	amagnet	ic
	(D)	All are diamagn	etic					

21.	Assign	n the hybridization	n, shape a	nd Magnetic mome	ent of [N	$[\ln \mathrm{Br}_4]^{2-}$			
	(A) (C)	sp ³ , tetrahedra dsp ² , square pl	-	.	(B) (D)	sp ³ , tetrahedral, dsp ² , square plan			
22.	Numb	er of unpaired ele	ectrons in	$[CoF_6]^{3-}$ and $[Coff]$	$(NH_3)_6]$	3+ are respectively	<i>7</i> .		
	(A)	4 and 0	(B)	0 and 4	(C)	3 and 1	(D)	1 and 3	
23.		orrect information rement of:	about th	e structure adopted	d by met	al complex, the Va	alence I	Bond Theory often requ	uires the
	(A)	Molar conduct	tance		(B)	Optical Activity			
	(C)	Magnetic Mon	nent		(D)	All of these			
24.	Magni	itude of crystal fie	eld splittin	ng depends on					
	(A)	Charge on met	_		(B)	Type of ligand			
	(C)		netal belor	ng to first, second o	r Third t	ransition series.			
	(D)	All of these							
25.	Which	n of the following	is correct	order of energy of	d orbita	l's for [Mn(H ₂ O) ₆	$]^{2+}$		
	(A)	dxy = dyz = dz				$dz^2 = dx^2 - y^2$		$= dyz = dz^2$	
	(C)	dxy < dyz = d	$dx < dx^2$	$< dx^2 - y^2$	(D)	dxz = dyz < dxy	$y < dx^2$	$< dx^2 - y^2$	
26.	Which	n of the following	relationsl	nip is true :					
	(A)	$\Delta t = \frac{8}{9} \Delta_0$	(B)	$\Delta t = \frac{4}{9} \Delta_0$	(C)	$\Delta_0 = \frac{8}{9} \Delta t$	(D)	$\Delta_0 = \frac{4}{9}\Delta t$	
27.	In whi	ich of the following	ng co-ordi	nation entities, Ma	gnitude	of Δ_0 is maximum	1		
	(A)	$[Co(CN)_6]^{3-}$	(B)	$\left[\operatorname{Co}(\operatorname{C}_2\operatorname{O}_4)_3\right]^{3-}$	(C)	$\left[\mathrm{Co}(\mathrm{H_2O})_6\right]^{3+}$	(D)	$\left[\text{Co(NH}_3)_6\right]^{3+}$	
28.	For c	omplex [Ml ₆] ³⁺	where M	is metal ion w	vith d ⁷	configuration and	L is n	eutral monodentate li	gand. If
	$\Delta_0 =$	$17000 \mathrm{cm}^{-1}$ and I	P = 14,000). Then electronic c	onfigura	ation of complex wi	ill be :		
	(A)	$t_2g^3eg^1$	(B)	$t_2g^4eg^0$	(C)	$t_2g^4eg^3$	(D)	$t_2g^6eg^1$	
29.		on Ni ²⁺ form contively:	omplex []	$Ni(H_2O)_4en]^{2+}, [Ni]$	i(H ₂ O) ₂ ($[Ni(en)_2]^{2+}$ and $[Ni(en)_2]^{2+}$	$[n]_3]^{2+}$. T	The colour of comple	exes are
	(A)	Pale Blue, Blu	e and Vio	let	(B)	Blue, pale – blue	e and vio	olet	
	(C)	Violet, Blue an	nd Pale – 1	blue	(D)	Violet, Pale – bl	ue and b	blue.	
30.	Colou	r of anhydrous Cu	uSO ₄ and	CuSO ₄ . 5H ₂ O are	respectiv	ely.			
	(A)	Blue and white	e (B)	white and Blue	(C)	Both blue	(D)	Both white	
31.	Which	n of following is c	colourless	?					
	(A)	$\left[\mathrm{Ti}(\mathrm{H_2O})_6\right]^{3+}$	(B)	$\left[\mathrm{Cu}(\mathrm{H_2O})_4\right]^{2+}$	(C)	$[\mathrm{Mn}(\mathrm{H_2O})_6]^{2+}$	(D)	$[TiF_6]^{2-}$	

3.3	3371 . '11.1	1 C 1	.1 C.11		C 11 '
32.	What will be correct	order for waveleng	th of Absorption	n in visible light to	r following :

(A)
$$[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$$

(B)
$$[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$$

(C)
$$[Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+} < [Ni(NO_2)_6]^{2+}$$

(**D**)
$$[Ni(H_2O)_6]^{2+} < [Ni(NO_2)_6]^{2+} < Ni(NH_3)_6]^{2+}$$

33. Among following ligand, the correct order of increasing field strength is:

(A)
$$CO < NH_3 < en < CN^-$$

(B)
$$CN^{-} < NH_{3} < CO < en$$

(C)
$$NH_3 < en < CN^- < CO$$

(D) en
$$< CN^- < NH_3 < CO$$

34. Shape of $[Ni(CO)_4]$, $[Fe(CO)_5]$ and $[Cr(CO)_6]$ are respectively.

- (A) Tetrahedral, Trigonal bipyramidal and octahedral
- Square planar, Trigonal bipyramidal and octahedral **(B)**
- **(C)** Square planar, octahedral and Octahedral
- **(D)** Tetrahedral, Octahedral and Octahedral

35. Which of the following statement are correct?

- (A) In [Ni(CO)₄], the oxidation state of Ni is zero
- **(B)** In metal carbonyls, dc-o increases compared to that in CO molecule
- **(C)** Carbonyl ligand can be bridging as well as terminal

36. For a Reaction of type
$$M + 4L \Longrightarrow ML_4$$
, four stability constant are as follows.

$$M + L \Longrightarrow ML$$

$$K_1$$
;

$$ML + L \Longrightarrow ML_2$$

$$K_2$$

$$ML_2 + L \Longrightarrow ML_3$$

$$ML_3 + L \Longrightarrow ML_4$$

$$K_{4}$$

Choose incorrect statements

(A) Stepwise stability constant are in order
$$K_1 > K_2 > K_3 > K_4$$

(B) Overall stability constant is represented as
$$\beta$$
 i.e $\beta = K_1 \times K_2 \times K_3 \times K_4$

- **(C)** Larger the stability constant, lesser the proportion of ML₄ that exist in solution
- **(D)** Dissociation constant of co-ordination compound is defined as reciprocal of formation constant.

Which of the following complex show synergic Bonding. 37.

(A)
$$[Ni(CO)_4]$$

(B)
$$[Mn(H_2O)_6]^{2+}$$
 (C) $NiCl_4^{2-}$

(D)
$$\text{Ti}(H_2O)_6]^{2+}$$

38. Stability of co-ordination compound is Related to

(A)
$$[Rh(PPh_3)_2Cl_2]$$
 (B)

$$\mathbf{B)} \qquad [\mathbf{Rh}(\mathbf{PPh}_3)_3\mathbf{Cl}]$$

(C)
$$[RhCl_3(PPh_3)]$$

$$[Rh(PPh_3)_3Cl_3]$$

- 41. Co-ordination compounds have great importance in biological system. In this context which of the following statement is correct.
 - (A) Chlorophyll, the pigment responsible for chlorophyll contain calcium
 - (B) Haemoglobin is Red pigment of Blood and acts as oxygen carries in co-ordination compound of iron.
 - (C) Cyanocobalamine is Vitamin B_{12} and contain Mg.
 - **(D)** Carbonic Anhydrase is an enzyme
- 42. Metal co-ordinate with Anti cancer/Anti tumor Species, cis-platin is
 - (A) Pt
- **(B)** Zn
- (C) Mg

(B)

(D) Fe

- **43.** EDTA is used in
 - (A) Estimation of Hardness of water
 - **(B)** Treatment of lead poisoning
 - (C) Instrumental method of Analysis of co-ordination compounds
 - **(D)** All of these
- 44. The IUPAC naming of $[Co(NH_3)_5 NO_2]Cl_2$ is:
 - (A) Nitrito-N-pentaammine cobalt (III) chloride
 - **(B)** Nitrito N pentaammine coblet (II) chloride
 - (C) pentaanmine nitrito N cobalt (II) chloride
 - (D) Pentaammine nitrito N cobalt (III) chloride
- **45.** Correct order of Magnetic Moment is
 - (A) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$
- $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
- (C) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$
- **(D)** $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$

IIT JEE | MEDICAL | FOUNDATION

Answer to Workshop - Inorganic Chemistry | Class XI

s-BLOCK ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	ABC	ABCD	AB	AB	ABCD	ABCD	ABCD	ABC	В	ABCD	ABCD	BD	BD	AD
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В	В	ВС	ВС	AC	BD	D	ABC	В	ABC	C	Α	С	ВС	ACD
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
D	ABD	Α	BD	BCD	ACD	ВС	Α	ABCD	BD	С	BD	С	ABCD	В
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	AD	ABCD	С	В	ABD	ABCD	Α	D	ABC	В	ABCD	ABD	ABCD	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
В	D	D	ABD	D	С	В	С	ABD	В	ABD	AD	В	Α	AD
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
ABCD	AC	D	В	Α	ВС	D	ВС	ABCD	D	В	Α	Α	D	ABD
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
D	D	BD	С	С	Α	Α	D	В	ВС	D	ABC	Α	ВС	С
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
D	ABD	D	CD	ABCD	С	Α	D	ABCD	D	Α	С	С	ABCD	AB
121	122	123	124	125	126	127	128	129	130	131	132			
D	ABCD	A	ABCD	D	D	ABCD	D	D	ABCD	AC	Α			

p-BLOCK ELEMENTS - I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D	С	С	Α	В	ВС	CD	ВС	В	В	В	AC	В	AB	BD
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
D	D	AC	ВС	AC	BD	BD	AB	Α	С	С	Α	D	D	В
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
С	С	D	C	BCD	AD	С	D	В	AB	C	В	D	В	С
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
D	С	ВС	В	С	В	С	С	С	В	D	В	С	AD	BD
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
В	С	ABCD	В	D	С	ABD	В	В	С	AC	С	С	С	В

76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
BCD	Α	В	D	С	ВС	В	CD	AB	BD	В	В	В	С	ВС
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
В	CD	CD	С	ВС	D	В	В	С	ABC	В	AD	В	D	ACD
106	107	108	109	110	111	112	113	114	115	116				
С	D	ACD	С	ABC	С	ВС	Α	Α	D	ABC				

Answer to Workshop - Inorganic Chemistry | Class XII

p-BLOCK ELEMENTS - II

1	2	3												
		3	4	5	6	7	8	9	10	11	12	13	14	15
ABCD	С	С	D	В	В	С	D	AD	В	С	ABC	BD	С	AB
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
ACD	BD	С	В	С	Α	В	Α	В	ABC	D	D	С	В	Α
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
С	AC	ABCD	ABD	ВС	ACD	ABD	BCD	D	AD	BCD	С	D	D	В
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
D	С	В	ABCD	D	С	AD	В	D	CD	Α	D	D	С	В
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
D	В	В	С	С	С	С	D	С	С	В	ACD	ABCD	ABC	CD
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
С	Α	D	D	AB	В	В	BD	AC	D	В	С	В	D	С
91	92	92	94	95	96	97	98	99	100	101	102	103	104	105
D	С	С	BD	AD	С	С	С	В	D	С	ВС	С	В	D
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
D	С	ВС	В	В	D	BCD	В	С	В	С	D	ВС	ABC	D
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
Α	D	В	С	С	ABC	BCD	AD	D	В	BD	AB	ABC	D	ABD
136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
D	D	В	С	AB	BCD	BD	Α	ACD	Α	С	В	В	С	CD
151	152	153	154	155	156	157	158	159	160	161	162	163	164	165
С	D	D	В	AD	ABC	В	ВС	D	D	В	С	В	CD	ABCD
166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
В	D	ВС	BCD	С	С	С	ABC	В	D	CD	ACD	ABD	D	Α
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195
С	D	С	D	В	С	С	В	С	D	D	С	ABD	Α	С

196	197	198	199	200	201	202	203	204	205	206	207	208	209	210
ACD	D	С	Α	D	С	CD	ACD	D	В	С	BD	С	D	AC
211	212	213	214	215	216	217	218	219	220	221	222	223	224	225
В	BCD	D	В	D	С	D	С	CD	AC	ABCD	С	ABD	Α	Α
226	227	228	229	230	231	232	233	234	235					
AC	BCD	С	С	С	D	D	ABCD	С	ВС					

d & f - BLOCK ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D	С	В	В	С	С	В	Α	D	Α	А	Α	Α	D	D
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
ВС	В	Α	В	С	В	В	В	В	С	Α	Α	Α	А	В
31	32	33	34	35	36	37	38	39	40	41	42			
В	В	В	В	Α	В	Α	Α	Α	Α	Α	С			

CO-ORDINATION CHEMISTRY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	В	С	В	Α	В	Α	В	В	В	D	С	Α	Α	Α
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В	В	В	Α	В	В	Α	С	D	Α	В	Α	В	Α	В
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
D	Α	С	Α	D	С	Α	D	С	В	В	Α	D	D	Α